Жар холодных числ и пафос бесстрастной логики
Шрифт:
Здесь мы должны, наконец, сказать об Аристотеле. В чем состоял его вклад, если логические схемы — правила рассуждений (во многом, во всяком случае) — были выделены до него? Прежде всего в том, что он их систематически описал в серии трудов, составляющих знаменитый «Органон»[9]. В важнейшем из этих трудов — «Первой аналитике» — была изложена силлогистика (система силлогистических умозаключений, или силлогизмов) — главное достижение Аристотеля в логике, от которого идет теория логики, то есть логика как наука.
Приведем один из аристотелевских силлогизмов: «если А приписывается всем Б, а Б — всем В, то А необходимо приписывается всем В», например, если свойство быть живым существом (А) приписывается всем двуногим существам (Б), а свойство двуногости (Б) приписывается всем людям (В), то свойство быть живым существом (А) необходимо приписывается всем людям (В)[10]. Это силлогистическое умозаключение — самая знаменитая форма (модус) силлогизмов: Barbara (латинские
Здесь мы ясно видим тот гигантский шаг вперед, который делает Аристотель по сравнению с Платоном: у Платона логические правила функционируют только в конкретных рассуждениях, Аристотель же отделяет их от содержания и делает предметом специального исследования. Именно, Аристотель, используя специальную терминологию, создает систему силлогизмов, охватывающую все правильные силлогистические умозаключения, то есть правила силлогистического вывода, позволяющие получать из верных посылок с необходимостью из них вытекающие верные заключения.
Силлогистика была главным достижением Аристотеля в логике, достижением, принадлежавшим, как можно полагать, ему лично. Она развертывается как аксиоматическая система — о такого рода построении мы будем подробно говорить в последующих главах — и (что самое поразительное!) удовлетворяет, по существу, критериям математической строгости, предъявляемым к современным формализованным системам. Она, таким образом, была более строгой, чем все математические теории античности, например, строже, чем знаменитые «Начала» Эвклида. Известный польский логик XX века Ян Лукасевич говорил по этому поводу: «Силлогистика Аристотеля является системой, точность которой превосходит даже точность математической теории, и в этом ее непреходящее значение»[11]. Удивительно, что этой точности Аристотель достиг, не используя специальную символику, а прибегая лишь к стандартизации обычного (греческого) языка, то есть опираясь в изложении системы на термины с четким смыслом да оперируя буквами греческого алфавита в качестве переменных для тех понятий («живое существо», «двуногое» и т. п.), которые появляются при применениях силлогистических форм.
Следует, правда, отдавать себе отчет в том, что построить такую строгую логическую систему — первую формальную систему в истории наук и, не прибегая к специальному языку знаков, Аристотель смог потому, что его силлогистика описывает лишь часть, причем очень простую, тех логических закономерностей, которым подчиняется мышление и язык. Тем не менее Аристотелева логика[12], как теперь все более начинают осознавать историки математики, оказала большое влияние на древнегреческую математическую мысль. Есть указания на то, что дедуктивный способ построения эллинской геометрии, знаменовавший собой один из важнейших ранних этапов развития математики и оказавший неизмеримое влияние на всю последующую науку (Декарт считал математику образцом для всех наук, Спиноза построил свой знаменитый философский тракт «Этика» по типу «Начал» Эвклида и пр.), не породил аристотелеву логику, как об этом часто писали, а был порожден развитием логики, в одном из своих фрагментов получившей столь завершенную трактовку у Аристотеля. Много раньше, чем цепочки безукоризненных по форме силлогизмов, начинающихся на недоказываемых положениях и кончающихся на утверждениях доказываемых, стали относиться к линиям и фигурам, они широко использовались в применении к самым различным объектам в бесчисленных словесных «упражнениях», подобных тем, к которым призывал Сократа Парменид. Вот что говорит об этом наш современник венгерский математик и логик Ласло Кальмар: «Большинство математиков, включая некоторых историков математики, считают, что дедуктивный способ вывода фактически был изобретен математиками. Однако А. Сабо установил факт сильнейшего влияния элейской диалектической философии на древнегреческую математику, показав, что многие математические понятия, особенно те, которые относятся к дедуктивному методу, берут свое начало в диалектике элеатов... Таким образом, дедуктивный вывод, по-видимому, до математики изобрела философия»[13].
Нет сомнений относительно влияния, которое оказала логика — и особенно логика Аристотеля, создавшего не только силлогистику, но и заложившего основы общей теории аксиоматического (дедуктивного) метода (он изложил их во «Второй аналитике»), — на математику[14]. Таким образом, современный синтез математики и логики начал подготовляться еще в античную пору.
Рис. 1. Историческое развитие языково-мыслительных и математико-формализованных средств познания.
Подводя итог сказанному в этой главе, приведем схему подготовки и развития формализованных средств научного исследования, сделавших возможными современные достижения кибернетики и логики (рис. 1).
Как мы видим, все и в самом деле началось с обычного слова, с обиходного языка — необходимого условия мышления. В языке, этом драгоценнейшем из богатств человечества, образовались зародыши формализованного аппарата: с одной стороны, формальная логика, с другой стороны, арифметика (выразительные средства для описания чисел и их отношений) и доэллинская геометрия (средства для описания линий и фигур и их свойств). На определенной стадии культурного развития эти механизмы были экстрагированы из языка и стали развиваться самостоятельно, Эвклидову геометрию можно считать первым важным результатом их взаимодействия. Но в дальнейшем пути математики и логики сильно разошлись, и в течение многих столетий их считали совсем разными областями знания (настолько разными, что логику, как правило, причисляли к «гуманитарным» наукам, то есть к чему-то прямо противоположному наукам «точным», ядром которых является математика). Это произошло главным образом потому, что математика рано обрела формальные выразительные средства (символика алгебры, аналитической геометрии, а затем анализа), заговорила «на своем языке» и стала расти с исключительной интенсивностью. Логика же как бы временно зашла в тупик: ее изучение проводилось в основном на естественном языке, а это не давало больших результатов, ибо возникал своего рода порочный круг. Вспомним, что специфическая ценность логики заключается именно в тех особенностях, которые отличают ее от общеязыковых средств (это поняли еще древние), а исследовать и развивать ее пришлось этими же общеязыковыми средствами. Правда, уже Аристотель применял буквы для выражения структуры суждений и умозаключений, причем применял точно так же, как они ныне употребляются в математике (то есть как символы, на место которых можно подставлять объекты различного конкретного содержания). Но это был лишь первый шаг по направлению к «внеязыковой» формализации логики. Некоторые дальнейшие шаги (использование диаграмм) были сделаны средневековыми схоластическими логиками, развивавшими античную логическую традицию. Но далеко логика все же не могла уйти — у нее не было своей символики, ее душила немота.
Почему бы логике не прибегнуть к помощи своей родной сестры, так ее обогнавшей, математики? В конце концов логика именно это и сделала, но лишь в XIX веке, когда математика стала достаточно мощной и смогла разработать особый символический алфавит и правила обращения с его знаками, удовлетворяющие высоким требованиям исследования высказываний и рассуждений. С этого момента логика как бы родилась вторично и стремительна двинулась к воссоединению с математикой.
Итак, заминка была в выразительных средствах. Но не могла ли логика поискать их где-то вне математики?
Да, такой путь существовал, и опробован он был очень давно.
2. МЕХАНИЧЕСКОЕ РАССУЖДЕНИЕ
Вспомним еще раз, какие черты характеризуют логику как специфический элемент мышления и языка.
Прежде всего, логика, то есть логические правила рассуждений, относится не к конкретным языково-мыслительным образованиям (и этим наука логика отличается от таких наук, как ботаника или минералогия), а к их форме (структуре), и потому для логики безразлично, что эти образования означают (выражают), с какими объектами связываются в нашем сознании. Схемы логики реализуются в языке — в его словах, выражениях, предложениях, «блоках» предложений — текстах и т. п., неважно, произносятся ли они вслух или пишутся на бумаге. Если выражения языка шифруются определенными знаками (символами), то и в этой символической записи присутствует логика.
Далее, схемы (формы, правила) логики имеют отношение не ко всяким выражениям языка (и этим логика отличается от грамматики, орфографии или синтаксиса), а только к тем, которые представляют собой особые языково-мыслительные конструкции — такие, как описательные выражения (дескрипции), обозначающие индивидуальные предметы (примером может служить выражение «Воспитатель Александра Великого и ученик Платона», обозначающее Аристотеля); понятия, задающие классы предметов; суждения (высказывания), могущие содержать истинное знание либо неверно информировать о чем-то (ложь); умозаключения, представляющие собой правила логического перехода от одних (верных) суждений к другим; доказательства — более сложные конструкции, состоящие из суждений и умозаключений и нацеленные на обоснование истинности суждений, и ряд других. Для связи между этими конструкциями используются специальные «логические» слова типа «или», «и», «не» («неверно, что»), «если ..., то», «все», «некоторые», «следовательно» и многие другие. Центр тяжести при этом лежит в выведении одних (истинных) суждений, называемых заключениями (следствиями) из других, называемых посылками.