Жизнь и мечта
Шрифт:
Энергетика в широком смысле этого слова — главнейшая проблема всякого физического, химического или биологического процесса. Все совершается за счет энергетических переходов или. превращений. Энергетика в узком смысле слова (т. е. энергетика техническая) также связана с энергетическими превращениями. На электрической станции, например, химическая энергия топлива превращается сначала в тепловую энергию, потом в анергию упругого пара, потом в механическую, и, наконец, последняя в турбогенераторах превращается в энергию электрическую.
Электрическая энергия, как наиболее гибкая форма,
Однако следует всегда помнить, что энергия едина, различны только ее формы. Следовательно, должна существовать полная взаимопревращаемость всех видов энергии или, по крайней мере, хотя бы тех ее форм, которые известны нам в настоящее время.
Первой формой, которую познал человек, была энергия механическая — механическая работа. Потом он научился превращать ее в энергию тепловую — стал добывать огонь трением.
Обратный переход, как уже отмечалось, совершился не скоро. Вероятно, прошло несколько десятков тысячелетий, прежде чем Герон Александрийский в 120 г. до нашей эры изобрел машину, вращающуюся за счет силы струи пара, — далекий прототип современной паровой турбины. И прошло еще почти две тысячи лет, пока была построена паровая машина — первый прибор для превращения тепловой энергии в действительно полезное механическое движение («огненная» машина). Этим был завершен первый круг взаимных превращений двух различных видов энергии. Было доказано, что теплота и механическое движение действительно взаимопревращаемы.
247
Блестящими опытами Фарадей добыл от природы еще одно доказательство взаимопревращаемости различных видов энергии. Он показал, что электрическая и магнитная формы энергии также могут переходить одна в другую. Теперь этим уже не ограничиваются доказательства взаимопревращаемости различных видов энергии. При зарядке аккумуляторов, например, происходит прямое и непосредственное преобразование электрической энергии в энергию химически потенциальную, а при разрядке — обратное ее превращение. Свет может преобразовываться в электрическую форму энергии, а электричество — в свет. Электроны и позитроны, аннигилируя, могут образовывать кванты излучения, а последние, при определенных условиях, могут переходить в пары позитрон — электрон. Этот закон в природе действует повсюду.
Но можно ли утверждать, что мы уже знаем все об этом великом законе природы? Можем ли мы управлять всеми его проявлениями? Является ли круг взаимных превращений различных видов энергии замкнутым во всех его звеньях? Утвердительного ответа на все эти вопросы мы получить пока не можем, на пути к нему стоит еще много нераскрытых тайн природы. Раскрыть их — наша задача.
Чтобы проиллюстрировать свою мысль, приведу один весьма простой, но, как мне кажется, достаточно убедительный пример.
Из житейского опыта всем хорошо известно, что если включить в штепсельную розетку электрическую плитку или даже простую проволочную спираль, то она накалится, т. е. произойдет прямое, всеми видимое, непосредственное и стопроцентное преобразование электрической энергии в энергию тепловую. Известно также, что в этом случае тепловой энергии выделится ровно
Конечно, в обычных условиях не всю выделившуюся тепловую энергию можно собрать и эффективно использовать. Но ведь и электрическую энергию можно тоже растерять. В данном случае имеется в виду определение коэффициента преобразования. Точными калориметрическими измерениями было показано, что при нагревании проволочной опирали электрическим током имеет место полное превращение одного вида энергии в другой вид.
248
Иного результата и быть не может, так как в противном случае был бы нарушен всеобщий закон сохранения энергии. При неполном преобразовании электрической энергии мы вынуждены были бы ответить на вопрос: а куда девалась остальная, т. е. непреобразованная, часть энергии? К счастью, в данном случае такой вопрос не приходится ставить. Электрическая энергия, теряемая на омическом сопротивлении металлической спирали, действительно целиком, полностью и непосредственно, преобразуется в тепловую энергию.
А вот обратного процесса, т. е. полного и непосредственного перехода тепла в электрическую форму энергии, пока еще не открыто. Наука не знает еще о таких процессах, тайна их пока остается неразгаданной.
Попытки непосредственного преобразования тепловой энергии в электрическую предпринимались не раз. Тот же Фарадей, а затем англичанин Армстронг еще в 1844 г. пытался осуществить прямое преобразование тепловой энергии струи горячего пара непосредственно в электричество. Однако эта задача на уровне развития науки и техники того времени была непосильной.
Как же пошло дальнейшее развитие науки и техники в интересующей нас области? Всякий, кто будет беспристрастно изучать историю развития науки, должен будет отметить, что в ней стали укрепляться тенденции прямо противоположного направления. Последующее развитие науки привело к тому, что в ней появились положения и законы, накладывающие не только ограничения, но и прямой запрет на возможность отыскания подобных процессов. Мы найдем тысячи ссылок на то, что существует цикл Карно, что существует второе начало термодинамики, что использование тепловой энергии связано с термодинамическим коэффициентом полезного действия, численное значение которого никогда не может, даже в идеальном случае, превышать соотношение = ( (T1– T2) / T1 ) • 100%.
А из этого соотношения вытекает: для того чтобы преобразовать какое-либо количество тепловой энергии в энергию другого вида (например, в работу), необходимо, во-первых, иметь перепад температуры от T1 до T2 и, во-вторых, — максимальное приближение к так называемому «идеальному» процессу, при котором всякие видимые потери отсутствуют.
249
Только- в этом случае можно получить коэффициент полезного действия, приближающийся к своему максимальному значению. Но и тогда он не может достигнуть единицы, т. е. 100%. Это соотношение считается раз и навсегда установленным, и нарушать его никому не позволено.