Жизнь и мечта
Шрифт:
С другой стороны, электроны интересны еще и тем, что из всех известных нам пока элементарных частиц только они продолжают движение даже при абсолютном нуле температуры, когда всякое другое движение атомов и молекул в кристаллической решетке, согласно общим законам термодинамики, практически прекращается.
В этих условиях только электроны сохраняют свою кинетическую энергию и приобретают даже более правильный порядок распределения по своим энергетическим уровням.
Уже сказанное дает повод проявлять значительно больший интерес к электрону. Однако у него есть и другие свойства, которые, как нам кажется, должны вызвать особый интерес в свете поставленной нами проблемы;
Чтобы решить задачу об организованном перераспределении
Второй вопрос: возможно ли перемещать тепловую энергию из одной зоны в другую настолько быстро, чтобы естественная теплопередача за тот же промежуток времени не привела к заметному выравниванию температур?
260
Независимо от конкретного способа решения главной задачи мы обязаны будем ответить на эти два вопроса, ибо в окружающем нас пространстве при полном рассеянии энергии действительно нет никаких существенных перепадов температур и, кроме того, в силу теплопроводности среды и всех известных материалов есть опасение, что перемещенное из одной зоны пространства в другую какое-то количество тепловой энергии тут же вновь рассеется.
Электрон поможет положительно ответить и на эти два вопроса. В самом деле, известно, что в каждом атоме электроны строго распределены по энергетическим уровням, соответствующим данной химической природе вещества и его температуре. Нет и не может быть в атоме (а следовательно, в сложном веществе) электронов с произвольными скоростями движения, с произвольными уровнями энергии. Следовательно, при переходе электрона из проводника одной химической природы в проводник другой химической природы (а при наличии тока такой переход обязательно совершается) должен существовать процесс взаимного обмена энергиями между движущимся электроном и кристаллической решеткой вещества. Не может, например, электрон, пришедший из меди в алюминий, оставаться с той же средней энергией, какую он имел в меди, ибо средняя скорость кинетического движения электронов в алюминии значительно ниже, чем в меди. При переходе электрона через границу алюминий — медь в обратном направлении имело бы место обратное явление, так как средняя энергия электронов проводимости в меди значительно выше, чем в алюминии.
Может ли электрон, пришедший в данное вещество с энергией, не соответствующей его химической природе, сохранять ее сколь угодно долго? Конечно, нет.
Взаимодействуя с другими электронами кристаллической решетки вещества, он обязательно вынужден будет изменить свое энергетическое состояние и приобрести ту энергию, которая характерна для данного химического вещества (проводника). В одном случае, например при переходе из меди в алюминий, он должен отдать кристаллической решетке часть своей энергии, а в другом случае — при переходе из алюминия в медь — он должен приобрести от кристаллической решетки недостающую ему энергию.
261
Схема движения электронов на границах разных проводников
Что будет, если мы составим замкнутую цепь из проводников разной химической природы и заставим электроны проводимости двигаться в них в преимущественном направлении? Правда, мы пока не умеем еще создавать спонтанного (самопроизвольного) преимущественного направления в движении электронов проводимости внутри металлов.
С собственными скоростями они движутся во всевозможных направлениях,
В случае замкнутой цепи, состоящей из двух разнородных проводников, мы обязательно имели бы две границы их раздела, или, как часто говорят, два спая. При движении электронов в такой цепи, преимущественно в каком-либо одном направлении, получилось бы двойное преобразование энергии движущегося электрона. На предлагаемом рисунке можно наглядно видеть схему такого преобразования.
На границе I при переходе электрона из проводника с меньшей средней энергией движения электронов в проводник с большей средней энергией в ближайшей же зоне нового проводника произойдет захват недостающей части энергии, а на границе II произойдет обратный процесс— электрон отдаст свою избыточную энергию этому новому проводнику. И нужно заметить, что в этом случае электрон отдаст энергии ровно столько, сколько он захватил ее при своем переходе через границу раздела I, ибо он вновь попадает в проводник той же химической природы, из какой он вышел при переходе первой границы раздела.
262
На первый взгляд все это элементарно просто. Но какие важные выводы можно сделать из такой мыслимой схемы? Вот эти выводы.
Во-первых, захват и преобразование тепловой энергии решетки металла в энергию движущегося электрона в этом случае происходит без какого-либо температурного перепада. Во-вторых, перемещение этой энергии вдоль проводника до места нового ее выделения происходит с максимальной скоростью — со скоростью света.
Эти два вывода имеют принципиальное значение, так как они позволяют указать на то, что в природе действительно имеет место прямое и непосредственное преобразование тепловой энергии среды (в данном случае металла), а следовательно, и окружающего пространства в другую форму энергии.
На границе раздела, в том месте, где электрон, взаимодействуя с решеткой металла, берет себе энергию, произойдет понижение температуры. Металл, взаимодействуя с окружающей средой, примет на себя часть ее энергии, и, таким образом, в этом случае действительно произойдет прямое и -непосредственное преобразование тепловой энергии окружающего пространства в энергию движущегося электрона. При длительном течении тока через границу раздела будет происходить и длительный захват энергии. При этом через некоторое время произойдет понижение температуры спая металлов (эффект Пельтье). В этом случае вся окружающая среда по отношению к этому спаю металлов станет как бы «горячим телом». От этого «горячего тела» тепловая энергия по классическим законам физики должна будет идти к менее нагретому телу, т. е. к месту спая металлов. Значит, тут никакого противоречия с классической физикой и с пресловутым постулатом Клаузиуса нет. Само окружающее пространство в этом случае по отношению к первой границе раздела металлов является «горячим телом».
Согласившись с этим, поняв это, нетрудно понять и то, что в природе действительно существуют искомые нами процессы.
На второй границе раздела металлов произойдет выделение энергии, преобразование энергии движущегося электрона сначала в колебательную энергию решетки металла, а затем и в тепловую энергию окружающего пространства. Этот процесс более понятен, и останавливаться на нем нет необходимости. Важно лишь заметить, что количество выделившейся в этом случае энергии будет в точности соответствовать количеству энергии, поглощенной на первой границе раздела металлов.