Журнал «Компьютерра» № 24 от 28 июня 2005 года
Шрифт:
S_{tot} (S_{tot})_{конечн} – (S_{tot})_{начальн} >= 0, (3)
то есть суммарная энтропия системы не может уменьшаться. Последняя формула полезна также тем, что из нее можно вывести ограничение на энтропию обычной материи.
Рассмотрим так называемый процесс Сасскинда [L. Susskind, The world as a hologram//J. Math. Phys. 36, 6377 (1995)]: имеется сферически-симметричное тело «субкритической» массы, то есть такой, что еще удовлетворяет условию гравитационной устойчивости (см. выше), однако достаточно добавить немного энергии-массы DE, чтобы тело сколлапсировало в черную дыру. Тело окружено сферической оболочкой (чья суммарная энергия как раз равна DE), которая падает на тело. Энтропия системы до падения: (S_{tot})_{начальн} = S_{вещество} + S_{оболочка}, после: (S_{tot})_{конечн}= S_{ЧД} = A/4. Из (3) и неотрицательности энтропии получаем знаменитое ограничение сверху на энтропию вещества:
S_{вещество} <= A/4. (4)
Формулы (2) и (3), несмотря на их простоту, породили загадку, оказавшую огромное влияние на развитие
Излучение Хокинга. Коль скоро (2) и (3) наделены физическим смыслом, первый закон термодинамики диктует, что черная дыра должна иметь температуру, T. Но позвольте, какая может быть температура у черной дыры?! Ведь в таком случае она должна излучать, что противоречит ее главному свойству! Действительно, классическая черная дыра не может иметь ненулевую T. Но если предположить, что микросостояния черной дыры подчиняются законам квантовой механики, что, вообще говоря, почти очевидно, то противоречие легко устранимо [S.W. Hawking, Particle creation by black holes//Commun. Math. Phys. 43, 199 (1975)]. Согласно квантовой механике (точнее, ее обобщению – квантовой теории поля, КТП), может происходить спонтанное рождение частиц из вакуума. При отсутствии внешних полей пара «частица-античастица», рожденная таким образом, аннигилирует обратно в вакуумное состояние. Однако если поблизости есть черная дыра, то ее поле притянет ближайшую частицу. Тогда, по закону сохранения энергии-импульса, другая частица уйдет на большее расстояние от черной дыры, унося с собой часть ее энергии-массы [Распишем энергетический баланс для этого процесса. До рождения пары имеется ЧД массы M_1, после – ЧД с M_2 плюс та из частиц, которая не упала на нее. Из M_1 = M_2 + E_{част} и E_{част} > 0 получаем M_2 < M_1]. В результате, удаленный наблюдатель зарегистрирует поток излучения от черной дыры, которая будет расходовать массу на рождение пар частиц, пока полностью не испарится, превратившись в облако излучения [Вопрос о том, испарится ли ЧД полностью, еще обсуждается и тесно связан с парадоксом потери информации; см., например, M. Maia, Information storage in black holes//arXiv.org: gr-qc/0505119]. Температура черной дыры обратно пропорциональна ее массе, а значит, более массивные дыры испаряются медленнее, так как время жизни черной дыры пропорционально кубу массы (в 4-мерном пространстве-времени). Например, время жизни черной дыры с массой порядка солнечной превосходит возраст Вселенной, тогда как микро-ЧД с массой 1 тераэлектрон-вольт живет около 10^{-27} с.
Локальная квантовая теория поля прекрасно зарекомендовала себя при описании известных элементарных взаимодействий, кроме гравитационного. Стало быть, фундаментальная квантовая теория с учетом ОТО тоже относится к этому типу? Если принять эту гипотезу, то нетрудно показать, что максимальное количество информации, которое можно запасти в куске вещества объема V, равно V (измеренному в планковских единицах объема V_P ~10^-99 см^3) с точностью до множителя, зависящего от конкретной теории, то есть:
S_{вещество} ~ V. (5)
Однако эта формула вступает в противоречие с (4), так как в планковских единицах A намного меньше V для известных физических систем [Соотношение A/V составляет порядка 10^-20 для протона, и 10^{-41} для Земли]. Так какая же из формул верна – (4), базирующаяся на ОТО и свойствах черных дыр в квазиклассическом приближении, или (5), основанная на наивной экстраполяции обычной квантовой теории поля до планковских масштабов (10^{-33} см)? В настоящее время имеются сильные аргументы в пользу того, что неверна скорее (5), чем (4).
Это, в свою очередь, может означать, что подлинно фундаментальная теория материи – не просто очередная модификация квантовой теории поля, сформулированной «по объему», а некая теория, «живущая» на определенной поверхности, ограничивающей этот объем. Эта гипотеза получила название голографического принципа [G. ’t Hooft, Dimensional reduction in quantum gravity//arXiv.org: gr-qc/9310026], по аналогии с оптической голограммой, которая, будучи плоской, тем не менее дает объемное изображение. Принцип сразу же вызвал большой интерес, так как теория «на поверхности» – это нечто принципиально новое, вдобавок сулящее упрощение математического описания (ввиду понижения пространственной размерности на единицу, поверхности имеют меньшее число геометрических степеней свободы). В полной мере голографическая гипотеза пока не доказана, но уже существуют два общепризнанных подтверждения – ковариантный предел энтропии вещества [R. Bousso, A covariant entropy conjecture//JHEP 9907, 004 (1999)] и AdS/CFT-соответствие [J.M. Maldacena, The large N limit of superconformal field theories//Adv. Theor. Math. Phys. 2, 231 (1998)]. Первый дает рецепт вычисления статистической энтропии (4) для общего случая материального тела, как определенной величины, вычисляемой на светоподобных мировых поверхностях, ортогональных поверхности тела. Второе – это реализация голографии для некоего частного случая пространств постоянной кривизны, тесно связанная с теорией струн.
На заре прошлого века вождь мирового пролетариата, вероятно находясь под впечатлением открытий Резерфорда и Милликена, рождает знаменитое «электрон так же неисчерпаем, как и атом» [В.И. Ленин, Материализм и эмпириокритицизм. – М.: Издательство политической литературы, 1984]. Этот лозунг висел в кабинетах физики почти всех школ Союза. Увы, слоган Ильича так же неверен, как и его экономические воззрения. Действительно, «неисчерпаемость» подразумевает наличие бесконечного количества информации в любом сколь угодно малом объеме вещества V. Однако максимум информации, которую может вместить V, ограничен сверху, согласно (4).
Каким же образом существование этого предела «информационоемкости» должно проявляться на физическом уровне? Начнем немного издалека. Что такое современные коллайдеры, то есть ускорители элементарных частиц? По сути, это очень большие микроскопы, задача которых – увеличить разрешение по длинам, Dx. А как можно увеличить разрешение? Правильно, из принципа неопределенности Гейзенберга, xp= const (в общем случае >=), вытекает: если хочешь уменьшить x, надо увеличить импульс p и, как следствие, энергию E частиц. И вот представим, что некто построил коллайдер неограниченной мощности. Сможет ли он, открывая все новые и новые частицы, бесконечно извлекать информацию и приводить в тихий ужас Шведскую Академию наук? Увы, нет. Непрерывно увеличивая энергию сталкивающихся частиц, он рано или поздно достигнет стадии, когда в области столкновения расстояние между какими-нибудь из частиц станет сравнимо с соответствующим радиусом Шварцшильда, что немедленно приведет к образованию черной дыры. Начиная с этого момента, сколько ни увеличивай мощность, новой информации уже не получишь – всю энергию поглотит черная дыра. Последняя при этом будет интенсивно испаряться, возвращая энергию в окружающее пространство в виде потоков субатомных частиц (рис. 2). Таким образом, существование черной дыры, вкупе с законами квантовой механики, неизбежно означает существование экспериментального предела дробления материи.
Небольшое отступление. Похоже, Природа явно избегает «неисчерпаемостей» и прочих бесконечностей. По сути, бесконечность – чисто математическое понятие, трансфинитное число Кантора; в реальности же это, как правило, не более чем идеализация большой, но конечной величины. Любопытно, что изгнание тех или иных бесконечностей из физики порой ведет к смене научной парадигмы. Например, замена бесконечной скорости распространения взаимодействия на конечную привела к замене теории Ньютона на ОТО. Другой пример: систематический подход к устранению бесконечных расходимостей в квантовой теории поля привел к появлению таких ныне неотъемлемых понятий физики элементарных частиц, как петлевые поправки и «бегущая» константа связи.
Итак, мы выяснили, что ускорители элементарных частиц в принципе способны производить микроскопические черные дыры. Вопрос: какую они должны развивать энергию, чтобы получать хотя бы одно ЧД-событие в месяц? До недавнего времени считалась, что эта энергия чрезвычайно велика, порядка 1016 тераэлектрон-вольт (для сравнения: LHC может дать не больше 15 ТэВ). Но если окажется, что на малых масштабах (меньше миллиметра) наше пространство-время имеет число измерений больше четырех, то порог необходимой энергии значительно уменьшается и может быть достигнут уже на LHC [S. Dimopoulos and G. Landsberg, Black holes at the LHC//Phys. Rev. Lett. 87, 161602 (2001)]. Причина заключается в усилении гравитационного взаимодействия, когда предполагаемые дополнительные пространственные измерения вступят в игру [N. Arkani-Hamed, S. Dimopoulos and G.R. Dvali, The hierarchy problem and new dimensions at a millimeter//Phys. Lett.B 429, 263 (1998); I. Antoniadis, et al, New dimensions at a millimeter to a Fermi and superstrings at a TeV//Phys. Lett. B 436, 257 (1998)]. Так, если обычная сила гравитационного притяжения между массивными телами в 4-мерном П-В обратно пропорциональна квадрату расстояния между ними, то при наличии n дополнительных компактных измерений она модифицируется в F_{грав} ~ 1/r^{2+n} при r <= r_n, где r_n – максимальный размер вдоль измерений. Тогда с уменьшением r F_{грав} растет гораздо быстрее, чем по закону обратных квадратов, и уже на расстояниях порядка 10^{–17+32/n} см компенсирует силу электростатического отталкивания. А именно последняя ранее была причиной высокой пороговой энергии, так как, чтобы преодолеть кулоновские силы и приблизить сталкивающиеся частицы на необходимое расстояние r = R_s, надо было сообщить частицам пучка большую кинетическую энергию. В случае же существования дополнительных измерений ускоренный рост F_{грав} экономит значительную часть необходимой энергии.