Чтение онлайн

на главную

Жанры

Журнал «Компьютерра» № 4 от 30 января 2007 года
Шрифт:

Казалось бы, про полупроводниковые устройства все уже давно известно. В кристалл полупроводника хаотически внедряют атомы примесей, у которых во внешней оболочке либо на один электрон больше, либо, наоборот, одного не хватает. В результате в кристалле возникают переносчики заряда — электроны и дырки. Они дрейфуют под действием поля, порождая электрический ток, «аннигилируют», если встречаются друг с другом, или рождаются парами, если в полупроводник попадает подходящий фотон. Эти процессы прекрасно описываются макротеорией, которая устанавливает связь между током и напряжением.

Однако по мере дальнейшей миниатюризации ситуация становится все менее предсказуемой. Дело в том, что новые транзисторы так малы, что

в их канале помещается лишь несколько десятков атомов примесей. Когда их мало, каждый примесный атом, электрон или дырка уже не теряют свою «индивидуальность» и их случайное местоположение начинает заметно влиять на работу прибора. Поэтому, чтобы описать работу наноустройств, приходится следить чуть ли не за каждым носителем заряда.

Казалось бы, и тут все схвачено. Сканирующие туннельные микроскопы уже давно умеют «прощупывать» своей иголкой каждый отдельный атом. Однако с носителями заряда возникают большие проблемы. По игле течет слабый ток, так что электроны и дырки полупроводника изменяют свое естественное положение и характер движения, стремясь собраться вокруг близко расположенного острия иглы микроскопа. Чтобы обойти эту трудность, ученые применили лазер, импульсы которого порождают дополнительные пары электронов и дырок в полупроводнике и позволяют судить о том, как движутся заряды при отсутствии возмущений от иголки. Например, если после импульса лазера ток, текущий по игле, сильно изменяется, то ясно, что электронов и дырок до этого рядом не было. В экспериментах удалось детально проследить за распределением носителей заряда в p-n-переходе арсенида галлия. По мере увеличения напряжения на переходе с 0,5 до 0,9 вольт дырки все глубже проникали в n-область, как и предсказывает теория.

Коллеги японцев из Альмаденского исследовательского центра корпорации IBM в Калифорнии высоко оценили работу своих конкурентов. Хотя сканирующие микроскопы с лазерной подсветкой применяли и раньше, еще никому не удавалось в деталях проследить за течением тока по полупроводнику. Теперь инженеры смогут увидеть все сюрпризы, которые им готовят новые полупроводниковые приборы с размерами менее 50 нм. ГА

Особенности американской науки

Картинка с парой расплывчатых букв UR — Университет Рочестера, штат Нью-Йорк, и броским названием заметки «Ультраплотная оптическая память на одном фотоне» появилась в середине января в большинстве онлайновых изданий и даже оставила след в «большой» прессе. В заметках, в основном списанных с пресс-релиза университета, говорится об очередной революции в оптике, что позволяет «закодировать картинку в одном фотоне, замедлить его для хранения, а затем восстановить изображение». Звучит очень заманчиво и удивительно, тем более что подтверждается ссылкой на статью в серьезном журнале Physical Review Letters.

Разумеется, статья в солидной Washington Post уже не столь категорична, хотя и изобилует победными реляциями профессоров и ответственных за финансирование науки чиновников. И что же на самом деле? Неужели один-единственный фотон способен нести информацию о целом изображении? Разумеется, нет. Хотя эксперименты с ультраслабыми импульсами и были выполнены. Все дело в их интерпретации, которая добротную, но рядовую научную работу мигом превращает в многообещающий технологический прорыв.

На самом деле физики экспериментировали с банальным устройством оптической задержки. Оно представляет собой кювету длиной 10 см, заполненную парами металла цезия, которые нагреты до 100 С°. Кювету поместили в одно из плеч обычного интерферометра, чтобы, смешав с исходным сигналом, убедиться, что лазерный импульс в парах не испортился. На пути луча поставили маску с вырезанными буквами UR, дабы было что разглядывать. Заодно убедились, что система, как и всякая другая линейная оптика, работает точно так же и при очень малых уровнях сигнала, когда в одном импульсе не более одного фотона. Разумеется, чтобы фотоприемник восстановил все изображение, импульсы придется повторить многократно.

Подобных экспериментов с замедлением света в различных средах было много. Конечно, «кипяченый» цезий гораздо практичнее охлажденного почти до абсолютного нуля конденсата Бозе-Эйнштейна из атомов рубидия, но все еще крайне далек от практических нужд зарождающейся фотоники. В кювете импульс удалось задержать на 10 нс, что на порядок дольше, чем в сотне кремниевых кольцевых резонаторов IBM, описанных в прошлом номере. Но и кювета на несколько порядков крупнее чипа площадью менее одной десятой квадратного миллиметра. И если линию задержки от IBM хоть завтра в серию, то новое, не бьющее никаких рекордов устройство вряд ли скоро понадобится.

Разумеется, авторы обещают дальнейшее увеличение задержки, «сжатие» импульсов в пространстве и «хранение» в кювете сразу тысяч идущих подряд импульсов, которые не будут мешать друг другу. Однако как линию задержки ни называй, в полноценную память она превратиться не сможет. А громкая реклама на грани фола поможет разве что привлечь в университет доверчивых абитуриентов или выбить деньги из бюджета, но прогрессу и доброму имени науки вряд ли поспособствует. ГА

Где же темная энергия?

В Центре экспериментальной ядерной физики и астрофизики университета штата Вашингтон в Сиэттле проведена новая оценка применимости закона тяготения Ньютона на малых расстояниях. Оказалось, что он строго соблюдается на меньших дистанциях, нежели предписывает теория.

Эти эксперименты выполнены с целью проверки современных космологических представлений. В конце прошлого десятилетия астрономы доказали, что наша Вселенная вот уже несколько миллиардов лет расширяется не с падающей, а с возрастающей скоростью. Хотя причины ускорения до сих пор вызывают споры, господствует мнение, что скорее всего оно обусловлено воздействием вакуумного антигравитационного поля, которое часто называют космологической темной энергией. Его существование означает, что закон тяготения Ньютона должен выполняться лишь приближенно.

Однако отклонения от этого закона на опыте обнаружить нелегко. Из теоретических соображений следует, что они должны наблюдаться лишь на очень малых расстояниях между тяготеющими массами. Максимальная дистанция, на которой видны отклонения, задается с помощью простой формулы. Надо взять постоянную Планка, помножить ее на скорость света, произведение разделить на плотность темной энергии и извлечь из частного корень четвертой степени. Астрономические данные говорят о том, что плотность темной энергии равна 3,8 килоэлектронвольта на кубический сантиметр. Так что всякий может посчитать, что критическая дистанция должна составлять 0,085 миллиметра.

Определение силы тяготения на таких расстояниях — очень нелегкая задача. Дэн Капнер (Dan Kapner) и его коллеги построили прецизионные крутильные весы, обеспечившие нужную точность. Проведя серию измерений, исследователи не обнаружили отклонений от ньютоновской формулы обратных квадратов вплоть до дистанции 0,055 миллиметра. Этот результат не означает, что гипотеза антигравитации ошибочна, однако он может свидетельствовать о том, что современные представления о плотности и свойствах темной энергии нуждаются в поправках. АЛ

Поделиться:
Популярные книги

Страж. Тетралогия

Пехов Алексей Юрьевич
Страж
Фантастика:
фэнтези
9.11
рейтинг книги
Страж. Тетралогия

Ваше Сиятельство 2

Моури Эрли
2. Ваше Сиятельство
Фантастика:
фэнтези
альтернативная история
аниме
5.00
рейтинг книги
Ваше Сиятельство 2

Шериф

Астахов Евгений Евгеньевич
2. Сопряжение
Фантастика:
боевая фантастика
постапокалипсис
рпг
6.25
рейтинг книги
Шериф

Сильнейший ученик. Том 1

Ткачев Андрей Юрьевич
1. Пробуждение крови
Фантастика:
фэнтези
боевая фантастика
аниме
5.00
рейтинг книги
Сильнейший ученик. Том 1

Небо для Беса

Рам Янка
3. Самбисты
Любовные романы:
современные любовные романы
5.25
рейтинг книги
Небо для Беса

Авиатор: назад в СССР 10

Дорин Михаил
10. Покоряя небо
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Авиатор: назад в СССР 10

Сердце Дракона. Том 9

Клеванский Кирилл Сергеевич
9. Сердце дракона
Фантастика:
фэнтези
героическая фантастика
боевая фантастика
7.69
рейтинг книги
Сердце Дракона. Том 9

Кодекс Охотника. Книга XIV

Винокуров Юрий
14. Кодекс Охотника
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Кодекс Охотника. Книга XIV

Найди меня Шерхан

Тоцка Тала
3. Ямпольские-Демидовы
Любовные романы:
современные любовные романы
короткие любовные романы
7.70
рейтинг книги
Найди меня Шерхан

Неестественный отбор.Трилогия

Грант Эдгар
Неестественный отбор
Детективы:
триллеры
6.40
рейтинг книги
Неестественный отбор.Трилогия

Покоритель Звездных врат

Карелин Сергей Витальевич
1. Повелитель звездных врат
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Покоритель Звездных врат

Законы Рода. Том 4

Flow Ascold
4. Граф Берестьев
Фантастика:
юмористическое фэнтези
аниме
5.00
рейтинг книги
Законы Рода. Том 4

Столичный доктор. Том III

Вязовский Алексей
3. Столичный доктор
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Столичный доктор. Том III

Энфис 4

Кронос Александр
4. Эрра
Фантастика:
городское фэнтези
рпг
аниме
5.00
рейтинг книги
Энфис 4