Журнал «Вокруг Света» №10 за 2008 год
Шрифт:
Для более равномерного сжатия в последнее время стали применять схему непрямого облучения мишени. Твердый дейтерийтритиевый шарик помещают в оболочку из материала с большим зарядом ядра, например урана или золота. Лазерные лучи вводят в нее через два окна так, чтобы, не задев мишень, осветить внутреннюю поверхность оболочки. Она сразу превращается в слой горячей плазмы, испускающий мощное рентгеновское излучение, которое намного равномернее освещает мишень, вызывая ее сжатие.
Ожидается, что таким способом удастся достичь сжатия мишени в 4000 раз и получить в 100—200 раз больше термоядерной энергии, чем содержалось в лазерном импульсе. Впрочем, и этого мало: КПД лазера составляет около 2%, а значит, чистый выигрыш в энергии будет всего несколько раз. Возможно, ситуация
Еще одна проблема инерционного термоядерного синтеза — необходимость взрывать заряды несколько раз в секунду. Пока столь мощные лазеры дают по одному импульсу в несколько часов. Есть идея заменить их ускорителями ионов: у них значительно выше КПД, и они могут работать с высокой частотой. Но из-за электрического отталкивания ионов пучок трудно сфокусировать до нужного диаметра.
В целом положение с инерционным синтезом выглядит пока не слишком обнадеживающим. Но исследования продолжаются.
Тороидальные ловушки
Использование магнитного удержания плазмы выглядит более перспективным подходом к термоядерному синтезу. Главным препятствием на этом пути были различные неустойчивости. Плазма легко перетекает из области с сильным магнитным полем туда, где оно слабее. Ее давление в этом месте возрастает, вдобавок в ней возбуждается электрический ток, способный временно ослабить магнитное поле. В результате плазма может неожиданно вырваться из области удержания.
Наиболее успешным способом удержания оказались тороидальные магнитные ловушки. Если плазму замкнуть в кольцо, придав ей форму бублика (тора), и наложить вдоль тора магнитное поле, оно будет препятствовать движению плазмы поперек силовых линий. Вдоль силовых линий частицы плазмы могут перемещаться свободно, но при этом они все время остаются внутри ловушки, не сталкиваясь со стенками.
Правда, и тут все оказалось непросто. Магнитному полю в тороидальной ловушке надо придавать сложную винтообразную конфигурацию. Решая эту проблему, американские и советские ученые пошли разными путями. Лайман Спитцер в США предложил использовать специальные винтовые обмотки. Спитцер назвал свое изобретение стелларатором — что-то вроде «звездного тора».
В СССР для создания винтового поля в тороидальной камере решили пустить электрический ток прямо по плазме — она проводит электричество ничуть не хуже меди. Идея оказалась настолько успешной, что название установки токамак, образованное от слов «ток», «камера» и «магнитное поле», теперь известно всему миру.
С тех пор идет непрерывное соревнование токамаков и стеллараторов. Вначале успешнее развивались исследования на стеллараторах. Были изобретены и опробованы различные способы нагрева плазмы — током, текущим по плазме, магнитной накачкой, радиоволнами, придумано очень эффективное устройство очистки плазмы от примесей — дивертор. Температуру плазмы удалось довести до 1 миллиона градусов, но вот со временем удержания дела обстояли неважно — оно составляло лишь тысячные доли секунды, а с ростом температуры еще более сокращалось.
Робот-манипулятор обслуживает рабочую камеру крупнейшего в мире действующего токамака JET, Великобритания. Фото: SPL/EAST NEWS
Успехи токамаков
На токамаках в это время основной проблемой был радиационный барьер. Прорываясь сквозь магнитное поле, плазма касалась фарфоровой стенки камеры и загрязнялась атомами кремния, углерода, кислорода. Они ярко светились, и вся вкладываемая в плазму энергия уходила с этим излучением. Температура не поднималась выше 100—300 тысяч градусов. Преодолеть радиационный барьер удалось в результате долгой и кропотливой работы по совершенствованию конструкции. Фарфор заменили
Американским ученым очень не хотелось в это верить, и они подвергли сомнению методику измерений столь высокой температуры. Тогда академик Лев Арцимович пригласил английских ученых приехать в Москву со своими приборами и самим измерить температуру плазмы. Она оказалась даже еще выше — около 12 миллионов градусов. Была также измерена и мощность термоядерной реакции. При этой температуре она составила 0,005 ватта. После этого в США прокатилась волна оргвыводов: все работы по стеллараторам были прекращены, а на месте самого большого из них был построен токамак — точная копия советского. Началось триумфальное шествие токамаков.
За прошедшие 40 лет объединенными усилиями ученых всего мира проделана гигантская работа по исследованию удержания плазмы в токамаках. Изучены основные закономерности и механизмы переноса тепла и частиц, разработаны методы измерения плотности и температуры плазмы, электрических и магнитных полей. Созданы национальные и международные базы данных, где собираются результаты исследования поведения плазмы в различных условиях. К настоящему времени необходимая для термоядерного реактора температура в 100 миллионов градусов достигнута и даже превзойдена, правда, при меньшей чем надо плотности плазмы. На самом большом токамаке JET, построенном Европейским Союзом в Великобритании, мощность термоядерной реакции достигает уже 16 000 киловатт, возвращая около 40% от вложенной в плазму энергии.
Осталось сделать еще один шаг — получить от плазмы больше энергии, чем в нее вложено. Именно эта цель стоит перед международным реактором-токамаком ИТЭР.
Японский стелларатор LHD (Large Helical Device — «Большое спиральное устройство»). Стелларатор намного сложнее токамака, зато теоретически он может удерживать плазму сколь угодно долго. В планы исследований на LHD входит демонстрация непрерывного режима работы. Фото: NIFS, JAPAN
Самоорганизация плазмы
Причина столь быстрого прогресса токамаков заключается в явлении самоорганизации плазмы, открытом Борисом Кадомцевым в 1987 году. В экспериментах на токамаке Т-10 в Институт атомной энергии им. И.В. Курчатова, а затем и на других токамаках было обнаружено, что плазма стремится принять такую форму, при которой удержание получается наилучшим. Если ей не мешать, эта форма устанавливается сама собой. Попытки экспериментаторов навязать плазме другую форму только ухудшают ее поведение. Еще лучшие результаты получаются при возникновении в плазме транспортных барьеров — узких зон с резко пониженной теплопроводностью. Это приводит к росту времени удержания примерно вдвое. Впервые такой режим улучшенного удержания открыли на немецком токамаке ASDEX в 1982 году. И опять он получился «сам собой» за счет самоорганизации плазмы и сразу исчез — плазма вернулась к обычному режиму. Понадобилось около 15 лет, чтобы разобраться со сложным взаимодействием электрических и магнитных полей, вращения и дрейфа частиц плазмы, которые приводят к образованию транспортных барьеров. Теперь мы знаем, что надо сделать, чтобы получить режим улучшенного удержания, и как его поддерживать. Это открытие заставило отложить начало строительства реактора ИТЭР, чтобы сделать его более дешевым и эффективным за счет работы в режиме улучшенного удержания. С 1998 по 2002 год новый проект был разработан во всех деталях. По новому проекту ИТЭР стал меньше — большой радиус тора удалось сократить с 8,2 до 6,3 метра.