Журнал «Вокруг Света» №12 за 2007 год
Шрифт:
Системы дистанционного минирования разнообразны, но все основаны на сочетании кассетных боеприпасов, противотанковых и противопехотных мин и аппаратуры управления. Отстрел кассет может производиться на небольшую дальность в десятки метров — как, например, у отечественного переносного комплекта минирования ПКМ, самоходного универсального заградителя УМЗ или британского «Шильдер». Заградитель УМЗ несет на себе шесть полноповоротных контейнеров по 30 кассет в каждом, может установить минное поле, скажем, из противопехотных осколочных мин ПОМ-2 протяженностью 5 000 метров по фронту, из противотанковых ПТМ-3 — 600 метров, глубина поля составит от 15 до 240 метров.
Британский
Артиллерийские системы дистанционного минирования выполнены на основе штатных гаубиц и реактивных систем залпового огня и способны поставить минное поле на значительно большем удалении. Скажем, китайская реактивная система минирования Тип 84, конструктивно напоминающая советскую РСЗО «Град», включает 24 направляющих калибра 122 миллиметра и может в одном залпе установить 192 противотанковых противоднищевых или 3 072 фугасных противопехотных мин на дальности 7 000 метров.
Еще дальше действуют авиационные системы минирования в виде кассетных авиабомб, сбрасываемых на малой высоте и «рассеивающих» мины над заданным районом. Вертолетные системы минирования, впрочем, поначалу имели самое простое устройство. На советском вертолете Ми-4, например, монтировали лоток для сброса мин. А китайцы укладывали мины с парашютами штабелями и в нужный момент вручную сталкивали в люк. Позднее появились системы, производящие в полете отстрел стандартных кассет с минами. Скажем, советская система минирования ВСМ-1, предназначенная для установки мин с вертолета Ми-8МТ, включает 116 унифицированных кассет с противопехотными минами ПОМ-2 или противотанковыми ПТМ-3, может за 40 секунд установить минное поле протяженностью от 400 до 4 000 метров.
Пытливый читатель резонно возразит, что поставленные внаброс мины обнаружит даже не самый внимательный наблюдатель — и все же преодоление минного поля, «накрывшего» войсковую часть или внезапно образовавшегося на ее пути, оказывается не таким простым делом. Даже если только четвертая или пятая часть мин снабжена элементом неизвлекаемости, разминирование потребует времени. Не подойдут вовремя резервы, запоздает удар авиации, будут перекрыты пути отхода или сорвется маневр силами по фронту. А это значит — мины выполнили свою задачу, даже не взрываясь.
Со щупом в руке
Часто обнаруживают мины по демаскирующим признакам или с помощью щупов, в качестве которого может использоваться и штык, но обычно без специальных средств инженерной разведки не обойтись. Наиболее известны и распространены среди последних индукционные миноискатели, рассчитанные на поиск объектов, содержащих металлические детали. Первые конструкции таких приборов появились еще в годы Первой мировой войны. Правда, тогда они предназначались для поиска неразорвавшихся боеприпасов, коих оставалось на полях боев великое множество. Один из первых серийных образцов переносного миноискателя был принят на вооружение в СССР в 1938 году. Однако опыт советско-финляндской войны, а затем и Великой Отечественной заставил существенно усовершенствовать конструкцию миноискателей. За прошедшие десятилетия индукционные миноискатели прошли большой путь развития, связанный с изменением элементной базы и алгоритмов обработки сигнала.
Основной составной частью любого миноискателя является поисковый элемент — датчик, регистрирующий вид аномалии, вызванной присутствием инородного тела в грунте.
300-мм кассетный реактивный снаряд 9М55К4 к реактивной системе залпового огня «Смерч», СССР/Россия. Снаряд предназначен для оперативной дистанционной постановки противотанковых минных полей и содержит кассеты КПТМ-3 с противоднищевой миной ПТМ-3. Количество мин в боевой части одного снаряда — 25, дальность стрельбы — от 20 до 70 км
Поисковый элемент индукционного миноискателя связан с генератором электромагнитных колебаний, создающим локальное электромагнитное поле. Находящийся в грунте металлический предмет вызывает возмущение электромагнитного поля, оператор фиксирует это по изменению звука в наушниках, загоранию лампы, отклонению индикаторной стрелки. Для работы в грунтах, насыщенных осколками боеприпасов и другими металлическими предметами, а также для поиска мин с небольшим содержанием металла индукционным миноискателям требуются устройства селекции.
И они появились — благодаря стремительному прогрессу микросхемотехники и развитию алгоритмов формирования и обработки сигналов. Так, например, встроенная микропроцессорная система управления селективного индукционного миноискателя ИМПС позволяет автоматически настраивать прибор в процессе ведения поиска, быстро менять режим его работы, вручную задавать класс объектов для их селективного поиска. Кроме звукового сигнала современный миноискатель может выдать и визуальную информацию о классе обнаруженного объекта.
Одним из лучших миноискателей, применяемых в разных странах мира, считается австрийский AN-19/2 — его модификации применяют в Швеции , ФРГ , Великобритании , Италии , Нидерландах , Канаде , США (под обозначением AN/PPS-12). Это индукционный миноискатель импульсного типа: на круглую двойную поисковую рамку подается импульсный электрический ток, электромагнитное поле вызывает в металлических компонентах боеприпасов вихревые токи, создающие вторичное поле, которое возбуждает сигнал в приемных контурах поискового устройства. Сигнал обрабатывается электронным блоком и подается на головные «телефоны». Металлическая деталь массой 0,15 грамма будет обнаружена на дальности до 10 сантиметров, металлическая противотанковая мина — до полуметра. Но это не главное: в электронную схему британского миноискателя MD8 включены два микропроцессора, обеспечивающих не только увеличение чувствительности миноискателя, но и обнаружение малых масс металла вблизи больших масс. Он способен на удалении 10 сантиметров обнаружить деталь из нержавеющей стали массой 0,05 грамма рядом с полутонным стальным объектом. Это облегчает обнаружение минирования стальных и железобетонных построек, позволяет обнаруживать пластмассовые мины вблизи металлических (таким расположением нередко маскируют мины). В германском 2FD 4.400 реализована работа одновременно на двух частотах, что позволило совместить высокую чувствительность со способностью распознавать объекты, например, в грунтах с магнитными включениями. Встроенный микропроцессор осуществляет автоматическую перестройку режима работы при меняющихся параметрах грунта. Считается, что дальнейшее развитие алгоритмов обработки сигналов позволит намного поднять характеристики миноискателей даже без изменения их датчиков.
Уменьшение массы металла в минах заставляет искать иные принципы их поиска. Например, использовать радиоволновые миноискатели, представляющие собой, по сути, радиолокатор, излучающий сверхвысокочастотный сигнал (частотой 2,0 гигагерца и более) и анализирующий сигнал, отраженный от объектов. Объект выделяется и идентифицируется по его диэлектрической проницаемости, а значит, миноискатель надежно находит мины как с металлическим, так и с неметаллическим корпусом.