Золото, пуля, спасительный яд. 250 лет нанотехнологий
Шрифт:
Молекулярные машины живых клеток, как мы помним, универсальны в том смысле, что им безразлично, что производить, лишь бы все было по правилам. Универсален и код ДНК, лежащий в основе всего живого. Поэтому ферменты бактерии ничтоже сумняшеся копируют введенный ген, переводят его в РНК, а затем синтезируют на ее основе чуждый ей белок, превращаясь в фабрику по производству нужного нам вещества. Остается только каким-то образом выделить его из бактерий, но это уже техническая проблема. Особенно приятно, что эти “фабрики” способны саморазмножаться. Все, что от нас требуется, – это снабжать их питательными веществами, необходимыми как для размножения, так и для производства белка.
Бойер использовал в своих исследованиях еще одну техническую новинку – разработанный Меррифилдом машинный метод синтеза, о котором я рассказывал в предыдущей главе. Возьмем тот же соматостатит, состоящий из четырнадцати аминокислот. Он кодируется последовательностью из сорока двух (14x3) нуклеотидов. Синтезировать такую цепочку из отдельных нуклеотидов было вполне по силам даже при
Многие полагают, что за все это Бойеру следовало дать Нобелевскую премию. Но он ее не получил. Почему – об этом чуть позже.
В этой истории есть еще два интересных момента. Коэн с Бойером получили патент на разработанную ими технологию. Но роялти по нему получали университеты, где были выполнены исследования. Выплаты превысили сорок миллионов долларов, для Университета Калифорнии в Сан-Франциско это были рекордные в истории выплаты по одному патенту. При чем здесь Коэн с Бойером? Правильно, ни при чем, они ведь выполняли эти работы в “плановом” порядке, получая за это зарплату. Это к вопросу о пресловутой интеллектуальной собственности, которая, как нас пытаются убедить, служит главным движителем научных исследований. Настоящими учеными двигает страсть к познанию, они работают не ради собственности, а за идею, они просто не могут не делать открытий, пусть мелких, как писатель не может не писать книги, а поэт – записывать рождающиеся в его душе стихи. Ученым, как и всем людям, свойствен дух соперничества, они, естественно, мечтают о приоритете, но это не имеет ничего общего с интеллектуальной собственностью. О ней они, да и то не все, задумываются лишь потом, наблюдая, как кто-то другой наживается на их разработках.
Впрочем, к Бойеру это не относится. С ним случилась другая история, которую любят описывать в учебниках по бизнесу, венчурному финансированию и “инновациям в хай-теке”. В 1976 году к Бойеру обратился двадцативосьмилетний предприниматель Роберт Свенсон, прослышавший о научных открытиях Бойера. Согласно легенде, профессор смог уделить бизнесмену пятнадцать минут, но за это время Свенсон ухитрился уговорить его основать биотехнологическую компанию, названную Genetic Engineering Technology, сокращенно Genentech. Они внесли по пятьсот долларов в уставной капитал компании, Свенсон привлек со стороны средства для покупки оборудования и оплаты труда персонала, через два года в компании была разработана упомянутая уже технология получения инсулина, еще через десять Бойер и Свенсон стали мультимиллионерами. В 2009 году фармацевтический концерн “Hoffmann-La Roche” купил компанию “Genentech” за 46,8 миллиарда долларов.Будучи вице-президентом компании, Бойер продолжал преподавать в университете, а в 1990 году сделал взнос в десять миллионов долларов на развитие Йельской школы медицины и создание Бойеровского центра молекулярной медицины. Но это уже не могло спасти его безнадежно погубленную научную репутацию: он предал идеалы науки и продал гены за презренный металл! То ли дело Коэн – он остался “чистым” профессором! Злые языки утверждают, что именно поэтому Бойер и не получил Нобелевскую премию. Ведь ученым не чуждо ничто человеческое, и многие из них ревниво относятся к доходам своих соседей и коллег.Я хочу рассказать вам еще об одном открытии, которое, на мой взгляд, входит в десятку важнейших открытий в химии за последние полвека. Речь пойдет о полимеразной цепной реакции – ПЦР. О ней слышали все, кому довелось посещать современные диагностические центры. Так что против обыкновения начну с технологии.
Представьте, что у вас в руках находится образец ДНК, выделенный из какой-нибудь окаменелости или из вашего собственного организма, вырезанный с помощью рестриктазы из ДНК бактерии или полученный искусственно с помощью автоматического синтезатора. Во всех этих случаях вы располагаете очень маленьким количеством ДНК, подчас одной только молекулой. Проанализировать ее нет никакой возможности – не хватает чувствительности самых мощных современных методов. Единственный выход – каким-то образом размножить эти молекулы ДНК. Но как это сделать?
Природа это делать умеет, удвоение ДНК происходит при каждом делении клетки. Процесс этот очень сложный, выше я описал лишь вершину айсберга, на самом деле в репликации ДНК помимо хеликазы и ДНК-полимеразы участвует множество других ферментов и белков, и нет никакой надежды на то, что нам удастся заставить их работать в пробирке так же слаженно, как в живой клетке. И тем не менее приведенных мною сведений более чем достаточно для осуществления этого процесса. Напомню главный момент: для начала работы ДНК-полимеразе необходима затравка, называемая праймером. В клетке праймеры синтезирует специальная молекулярная машина, а у нас для этого есть автоматический синтезатор.
Итак, для разъединения цепей нам не нужна никакая хеликаза, для этого достаточно просто нагреть водный раствор почти до кипения. Затем добавим в раствор праймеры, соответствующие концевым участкам обеих цепей [41] , и начнем охлаждать раствор. В отсутствие праймеров цепи бы вновь соединились, но праймеров мы добавили много, они первыми успевают к концам цепей и прочно связываются с ними. Затем мы охлаждаем раствор до температуры, при которой хорошо работает ДНК-полимераза, добавляем ее в раствор вместе с набором нуклеотидов, и фермент немедленно начинает пристраивать их к праймеру, наращивая комплементарную цепь ДНК. В результате мы получим две точные копии исходной молекулы ДНК. А затем мы вновь нагреем этот раствор почти до кипения…
41
А откуда мы знаем, какие праймеры надо взять, спросите вы. Отвечу коротко: из сочетания огромного опыта, накопленного молекулярными биологами, и интуиции исследователя. И в конце концов, могут же ученые иметь свои маленькие секреты?
Так начинается своеобразный цепной процесс с удвоением количества молекул ДНК в каждом цикле, так называемое амплифицирование ДНК. Нетрудно подсчитать, что за 25 циклов образуется около 30 миллионов копий – количество, более чем достаточное как для анализа рутинными методами, так и для последующих превращений. Продолжительность цикла зависит, естественно, от длины молекулы ДНК. В основном копируют фрагменты длиной до 3000 пар нуклеотидов, на проведение одного цикла требуется 1–3 минуты. Но возможно копирование молекул ДНК с длиной до 40 тысяч пар нуклеотидов.
Для практических нужд чрезвычайно важно, что ПЦР позволяет скопировать определенный фрагмент молекулы ДНК. Праймеры при этом выполняют роль колышков, которые мы вбиваем в молекулу ДНК, говоря ДНК-полимеразе: строй от сих до сих. Таким образом, нет необходимости разрезать молекулу ДНК на части и выделять требуемый ген, можно его скопировать и размножить напрямую.
Теперь о человеке, который все это придумал. Зовут его Кари Маллис. Родился он в 1944 году в небольшом городке в штате Северная Каролина, с детства интересовался математикой, физикой и химией (в основном взрывчатыми веществами), образование получил химическое, увлекаясь тем же, чем и все студенты того времени, – ЛСД и все такое прочее. После окончания университета не много позанимался бизнесом, в 1972 получил степень Ph.D. по биохимии в Университете Калифорнии в Беркли, будучи аспирантом, увлекся астрофизикой и опубликовал статью с амбициозным названием “Космологические последствия обращения времени” в журнале “Nature”, ни много ни мало. После защиты диссертации бросил науку ради сочинительства романов, два года управлял пекарней, в 1979 году устроился работать химиком-синтетиком в небольшую биотехнологическую компанию “Cetus” в Калифорнии. Дважды разведен, трое детей. С точки зрения любого нормального человека – полный неудачник.Сам он так, естественно, не считал и продолжал размышлять над великими вопросами. И вот однажды весной 1983 года, в пятницу вечером, возвращаясь с работы, он задался тем же вопросом, что и мы: как размножить ДНК? Ответ пришел в виде озарения. Как рассказывал сам Маллис, он был потрясен красотой идеи, он даже остановился у придорожного киоска, купил бумагу и ручку и стал подсчитывать, сколько же в придуманной им реакции получается ДНК. Числа вы уже знаете, они большие. Весь уик-энд Маллис промучился сомнениями. Идея была хоть и красивой, но очень простой, она была суммой нескольких общеизвестных фактов, казалось невероятным, чтобы кто-то уже не попробовал ее реализовать. В понедельник ни свет ни заря Маллис поехал на работу, чего с ним отродясь не случалось, и все ради того, чтобы покопаться в библиотеке и убедиться в том, что ничего подобного в научной литературе нет.Идея была проста, но претворить ее в жизнь оказалось непросто – первую успешную реакцию ПЦР Маллис осуществил только по прошествии нескольких месяцев. На окончательную отработку методики ушло еще три года. Дело в том, что в описанной мною схеме есть существенный изъян, который вы, возможно, заметили. В начале каждого цикла водный раствор нагревают почти до кипения, ДНК-полимераза такого не выдерживает и денатурирует. Так что Маллису приходилось каждый раз добавлять после охлаждения свежую ДНК-полимеразу, а это лишний расход дорогого фермента и дополнительное загрязнение раствора. И тут Маллис обратил внимание на класс термостабильных ДНК-полимераз, выделенных незадолго до этого из бактерий Thermus aquaticus , обитающих, как понятно из названия, в горячих водах термальных источников.
Их описали несколько групп исследователей, в том числе советский биохимик Алексей Каледин в 1980 году [42] . Эти полимеразы выдерживали кипячение в водном растворе и работали при 70 °С. Так ПЦР обрела законченный вид.
Еще сложнее оказалось убедить научное сообщество в значимости новой реакции. Руководство и сотрудники родной фирмы отнеслись поначалу к идее Маллиса без энтузиазма. Журналы “Science” и “Nature” (на меньшее Маллис был не согласен) его статью отклонили со стандартной отговоркой: статья узкоспециальная, а они публикуют только статьи, имеющие общенаучное значение.
42
К чести Маллиса, он сослался на эту работу, опубликованную в советском журнале “Биохимия” на русском, естественно, языке. И вообще, как полезно следить за новинками научной литературы, в том числе в смежных областях.