Чтение онлайн

на главную

Жанры

Звезды: их рождение, жизнь и смерть
Шрифт:

Нами совместно с В. И. Красовским довольно давно была высказана гипотеза, объясняющая известное вымирание рептилий в конце мелового периода вспышкой вблизи Солнца сверхновой звезды. В настоящее время, однако, существующих палеонтологических данных недостаточно, чтобы подтвердить (или опровергнуть) эту гипотезу. Следует еще заметить, что для отдельных видов животных и растений увеличение уровня жесткой радиации могло быть фактором, благоприятствующим их эволюции. Не этим ли объясняется пышный расцвет растительности в каменноугольный период? Наконец, само возникновение жизни на первобытной Земле могло стимулироваться высоким уровнем радиации.

Глава 17 Крабовидная туманность

Не будет преувеличением сказать, что ни один космический объект не дал астрономии столько ценнейшей, принципиально новой информации, как Крабовидная туманность. В самом деле, Крабовидная туманность была первым галактическим объектом, с которым был отождествлен источник радиоизлучения. (Это произошло в 1949 г.) Она же была первым галактическим объектом, отождествленным с источником рентгеновского излучения (1963 г.). В Крабовидной туманности впервые был обнаружен совершенно новый тип оптического излучения, дотоле неизвестный астрономам (см. ниже). До этого единственным

известным астрономам видом оптического излучения было тепловое излучение звезд и туманностей. Новая интерпретация оптического и радиоизлучения в сочетании с анализом рентгеновского, гамма- и радиоизлучения впервые выявила огромное значение заряженных частиц сверхвысоких энергий и магнитного поля в динамике и эволюции многих космических объектов, главным образом метагалактических. Выяснение природы этой замечательной туманности помогло развитию современных астрофизических представлений, согласно которым в масштабе галактик, скоплений галактик и Метагалактики космические лучи играют не менее важную роль, чем «классические» компоненты материи — звезды и межзвездная среда. В самом конце 1968 г. Крабовидная туманность преподнесла астрономам очередной сюрприз: в ее центре находится самый замечательный из всех известных пульсаров. О нем будет много сказано в следующей части этой книги. Здесь мы только подчеркнем, что и в этом случае Крабовидная туманность оказалась первым известным космическим объектом, генетически связанным с пульсарами—этим совершенно новым типом населения Галактики. Автор книги ждет новых «сюрпризов» от этой так много уже «поработавшей» для астрономии туманности. В частности, он не будет удивлен, если пульсар в Крабовидной туманности окажется первым объектом, от которого будет обнаружено гравитационное излучение (см. § 24).

В последнее время считают, что Крабовидная туманность представляет собой остаток вспышки сверхновой II типа. В пользу этого вывода говорит ее сравнительно большая масса (1—2 M

) и аномально богатый гелием химический состав ее газовых волокон (см. ниже). Последнее обстоятельство указывает на то, что перед взрывом звезда, «породившая» Крабовидную туманность, прошла существенную часть своего эволюционного пути. Современные оценки первоначальной массы звезды, вспыхнувшей в 1054 г. как сверхновая, дают значение около 10 солнечных масс.

Еще в XIX веке Крабовидная туманность была объектом исследования ряда выдающихся астрономов. Однако большинство этих наблюдений были визуальными. Знаменитый английский астроном-наблюдатель лорд Росс был, пожалуй, первым, кто обратил внимание на волокнистую структуру Крабовидной туманности. Он же был «крестным отцом» этой туманности, назвав ее из-за характерной формы «Крабом». На рис. 17.1 приведена зарисовка этой туманности, сделанная Россом в 1844 г., где она действительно похожа на краба. При всей своей наивности этот рисунок вполне соответствует современным фотографиям (рис. 17.2). В частности, знаменитый «залив» этой туманности, хорошо видный на фотографии, и определяет две «клешни» «краба».

Рис. 17.1: Зарисовка Крабовидной туманности, сделанная лордом Россом.
Рис. 17.2: Фотография Крабовидной туманности.
Рис. 17.3: Раздвоение линий излучения в спектре Крабовидной туманности.Раздвоение линий излучения в спектре Крабовидной туманности.

Первая фотография Крабовидной туманности была получена в 1892 г. Спектр Крабовидной туманности начал исследоваться уже в XX столетии известным американским астрономом Слайфером (1913—1915 гг.). В частности, он первым обратил внимание на раздвоение ее спектральных линий излучения (рис. 17.3), ошибочно объяснив его... эффектом Штарка, который незадолго до его наблюдения был открыт в лаборатории. Конечно, сейчас такая «интерпретация» может вызвать улыбку. Не будем, однако, слишком строги к замечательному астроному, сделавшему немалое число важных открытий [ 39 ] : ведь в то время астрофизика была в эмбриональном состоянии. Слайфер же первым обратил внимание на яркий непрерывный спектр Крабовидной туманности, на который накладываются линии излучения. В дальнейшем ряд астрономов занимался спектроскопическими исследованиями этой туманности. Мы теперь кратко опишем ее спектр. В первом приближении он похож на спектры планетарных туманностей. Наиболее яркими линиями излучения являются характерные «запрещенные» линии ионизованных кислорода, азота и серы. Наблюдаются также более слабые линии водорода. Однако, в отличие от всех известных газовых туманностей, в том числе и планетарных, Крабовидная туманность имеет очень яркий непрерывный спектр. Конечно, и в газовых туманностях наблюдается сравнительно слабый непрерывный спектр, в частности, образующийся при одновременном излучении двух квантов (так называемый «двухфотонный процесс», на котором останавливаться здесь мы не можем). Однако в Крабовидной туманности только несколько процентов полного излучения сосредоточено в линиях, между тем как в планетарных туманностях картина совершенно обратная.

39

В частности, Слайфер первый обнаружил красное смещение линий в спектрах удаленных галактик.

Знаменитый американский астроном-наблюдатель Бааде еще в конце тридцатых годов получил исключительно интересные фотографии Крабовидной туманности через светофильтры. На рис. 17.4 приведена фотография, полученная на 100-дюймовом телескопе обсерватории Маунт Вилсон через фильтр, пропускающий известную красную линию водорода H

и близко расположенные к ней линии ионизованного азота. Эта фотография сильно отличается от фотографий, снятых в белом свете (см. рис. 17.2). Видна изумительной красоты ажурная сеть тонких волокон, охватывающих всю туманность по ее периферии. Из этой фотографии следует, что спектральные линии излучаются не всем объемом туманности, а только сетью волокон, в то время как непрерывный спектр излучается всем объемом туманности. Структура областей, излучающих только непрерывный спектр, была получена на фотографии, снятой через специальный фильтр, в пределах «полосы пропускания» которого нет сколько-нибудь интенсивных линий излучения (рис. 17.5). Эта фотография разительно отличается от приведенной на рис. 17.4. Неспециалисту может показаться, что речь идет о двух совершенно различных объектах! Структура туманности на этой фотографии выглядит гораздо более «диффузной» или «аморфной», чем на рис. 17.4. По-разному распределены и яркие детали. Таким образом, эти фотографии доказывают, что Крабовидная туманность состоит из двух отдельных частей: «ажурной» сетки тонких газовых волокон, расположенных в виде оболочки по периферии туманности, и занимающей практически весь объем «аморфной», излучающей непрерывный спектр субстанции, природа которой многие годы оставалась загадочной.

Рис. 17.4: Фотография. Крабовидной туманности через светофильтр, пропускающий линию H
.

Туманность имеет форму довольно правильного эллипса, угловые размеры которого приблизительно равны 4

6
. Обратим внимание, что вблизи центра этого эллипса находятся две слабые звездочки 16-й величины, расположенные на расстоянии около 5
друг от друга. Южная (на фотографии — нижняя) из этих звездочек сыграла выдающуюся роль в истории астрономии (см. § 19). Сама туманность имеет видимую звездную величину около 8m,5, т. е. она излучает в тысячу раз больше каждой из описанных выше звездочек.

В 1921 г. французский астроном Лампланд из сравнений фотографий туманности, снятых через 8 лет, нашел, что в ней наблюдаются изменения. Отдельные яркие детали аморфной массы вполне заметно переместились, но распределение яркости не остается постоянным, а как бы «дышит». В течение более 30 лет эти удивительные изменения не могли быть объяснены. Это явление изменчивости деталей — уникальное свойство Крабовидной туманности. Ни у планетарных, ни у диффузных туманностей ничего подобного не наблюдается. Из известного расстояния до «Краба» (см, дальше) и углового смещения деталей за 8 лет можно было сделать вывод, что отдельные части туманности движутся со скоростью, близкой к 0,1 скорости света — величина фантастически большая! Ввиду полной, как казалось, иррациональности этого явления астрономы просто не занимались им. Природа этих вариаций стала ясной, когда был наконец понят механизм оптического излучения Крабовидной туманности, о чем речь будет идти дальше.

Рис. 17.5: Фотография Крабовидной туманности через светофильтр, не пропускающий ярких линий излучения.

Значительно медленнее меняется расположение газовых волокон туманности. Наблюдения, разделенные промежутком времени в 30 лет, позволили установить, что вся система волокон расширяется. Она как бы «расползается» по небу с угловой скоростью около 0

,23 в год. С другой стороны, угловой радиус туманности составляет около 180
. Отсюда непосредственно следует, что возраст туманности, полученный в предположении, что скорость ее расширения все время оставалась постоянной, почти в точности равен 800 годам. Это, конечно, близко к возрасту, отсчитываемому от момента вспышки сверхновой (930 лет), но все же меньше его. Отсюда следует важный вывод, что движение волокон Крабовидной туманности происходит ускоренно. Только выяснение природы излучения «аморфной» массы Крабовидной туманности позволило объяснить причину ускорения ее волокон (см. ниже).

Поделиться:
Популярные книги

Школа. Первый пояс

Игнатов Михаил Павлович
2. Путь
Фантастика:
фэнтези
7.67
рейтинг книги
Школа. Первый пояс

Лейб-хирург

Дроздов Анатолий Федорович
2. Зауряд-врач
Фантастика:
альтернативная история
7.34
рейтинг книги
Лейб-хирург

Не грози Дубровскому! Том VIII

Панарин Антон
8. РОС: Не грози Дубровскому!
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Не грози Дубровскому! Том VIII

Вернуть невесту. Ловушка для попаданки

Ардова Алиса
1. Вернуть невесту
Любовные романы:
любовно-фантастические романы
8.49
рейтинг книги
Вернуть невесту. Ловушка для попаданки

Идеальный мир для Лекаря

Сапфир Олег
1. Лекарь
Фантастика:
фэнтези
юмористическое фэнтези
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря

Последний Паладин. Том 4

Саваровский Роман
4. Путь Паладина
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Последний Паладин. Том 4

Титан империи 7

Артемов Александр Александрович
7. Титан Империи
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Титан империи 7

На руинах Мальрока

Каменистый Артем
2. Девятый
Фантастика:
боевая фантастика
9.02
рейтинг книги
На руинах Мальрока

Сопряжение 9

Астахов Евгений Евгеньевич
9. Сопряжение
Фантастика:
боевая фантастика
постапокалипсис
технофэнтези
рпг
5.00
рейтинг книги
Сопряжение 9

Здравствуй, 1985-й

Иванов Дмитрий
2. Девяностые
Фантастика:
альтернативная история
5.25
рейтинг книги
Здравствуй, 1985-й

Генерал-адмирал. Тетралогия

Злотников Роман Валерьевич
Генерал-адмирал
Фантастика:
альтернативная история
8.71
рейтинг книги
Генерал-адмирал. Тетралогия

Машенька и опер Медведев

Рам Янка
1. Накосячившие опера
Любовные романы:
современные любовные романы
6.40
рейтинг книги
Машенька и опер Медведев

Беглец. Второй пояс

Игнатов Михаил Павлович
8. Путь
Фантастика:
фэнтези
героическая фантастика
боевая фантастика
5.67
рейтинг книги
Беглец. Второй пояс

Защитник. Второй пояс

Игнатов Михаил Павлович
10. Путь
Фантастика:
фэнтези
5.25
рейтинг книги
Защитник. Второй пояс