Чтение онлайн

на главную

Жанры

Звезды: их рождение, жизнь и смерть
Шрифт:

После 1948 г. в нашей Галактике было открыто несколько источников радиоизлучения, связанных с остатками вспышек сверхновых. В следующем, 1949 г. австралийскими радиоастрономами было обнаружено радиоизлучение от Крабовидной туманности — остатка вспышки сверхновой 1054 г. Через 3 года было обнаружено радиоизлучение от остатков вспышек сверхновых 1572 г. (Тихо) и 1604 г. (Кеплер). После этого был обнаружен протяженный (угловые размеры

3°) радиоисточник на месте системы волокнистых туманностей в созвездии Лебедя. Почти одновременно был обнаружен также протяженный источник радиоизлучения в созвездии Близнецов, на месте волокнистой туманности IС 443. Это открытие и дало основание считать эту туманность остатком вспышки сверхновой. В последующие годы было открыто довольно много таких объектов. Все они находятся около галактического экватора, что указывает на их весьма высокую концентрацию к галактической плоскости.

Как правило, остатки вспышек сверхновых представляют собой в рентгеновских и радиолучах неправильные, часто «неполные» оболочки с заниженной интенсивностью в центральной части (см. рис. 16.5). Около 10 лет тому назад у остатков вспышек сверхновых был выделен новый класс объектов,

получивших название «плерионы». Это такие остатки, у которых яркость концентрируется к центральной части. Классическим объектом этого типа является знаменитая Крабовидная туманность (см. рис. 17.2), которой будет посвящен следующий параграф. Всего в настоящее время в Галактике известно около десятка плерионов. Наряду с Крабовидной туманностью, большой интерес представляет объект 3C 58, отождествляемый со вспышкой сверхновой, наблюдавшейся в качестве «звезды-гостьи» в 1181 г. Недавно на обсерватории «Эйнштейн» в центре этого объекта как будто бы наблюдался точечный источник.

Рис. 16.5: Рентгеновское изображение источника Кассиопея А. Получено на обсерватории «Эйнштейн».

Встречаются также «гибридные» комбинации плерионов и оболочечных источников. Хорошим примером такой морфологии является объект Паруса X. Похоже на то, что у плерионов радиоспектр значительно более «плоский», чем у «оболочечных» источников. Значение плерионов для радиоастрономии определяется их несомненной связью с пульсарами (см. § 20).

Рис. 16.6: Фотография туманности Кассиопея А в красных лучах.

Среди довольно протяженных, с низкой поверхностной яркостью радиоисточников,— остатков вспышек сверхновых — резко выделяется Кассиопея А. Этот компактный объект имеет огромную поверхностную яркость (в радиолучах, разумеется), а связанная с ним оптическая туманность резко отличается от тонковолокнистых туманностей, наблюдаемых в «старых» остатках сверхновых звезд. Эта туманность имеет настолько необычный вид, что первое время открывшие ее исследователи упорно не желали считать ее остатком вспышки сверхновой. Действительно, вид этой туманности и ее спектр совершенно не похожи ни на Крабовидную туманность и ее спектр, ни на изображенные на рис. 16.2 и 16.3 системы тонковолокнистых туманностей в Лебеде и Близнецах. На рис. 16.6 приведена фотография туманности Кассиопея А, полученная в красных лучах. Видно довольно вытянутое волокно (протяженность его около 3

) на расстоянии 2
от центра туманности и большое количество «звездообразных» пятнышек, покрывающих всю площадь, занятую радиоисточником. Однако эти пятнышки отнюдь не звезды, а газообразные довольно плотные конденсации. Кроме пятнышек имеются также маленькие (до 20
) вытянутые волокна. Некоторые из них довольно ярки, другие едва различимы. Все эти «обрывки» туманности располагаются в пределах окружности с диаметром немного больше 6
. Особенно интересны спектры отдельных конденсаций волокон. Линии излучения волокон «диффузного» вида показывают огромные лучевые скорости, доходящие почти до 8000 км/с Наоборот, звездообразные пятна сколько-нибудь значительных лучевых скоростей не обнаруживают. Вся наблюдаемая картина оптической туманности Кассиопея А может быть объяснена следующим образом. Диффузные туманности представляют собой выброшенные во время взрыва звезды облака газа, движущиеся с огромной скоростью через окружающую их межзвездную среду. Важно подчеркнуть, что химический состав быстро движущихся волокон резко отличается от химического состава межзвездной среды. Такие элементы, как кислород, сера и аргон в этих волокнах в десятки раз более обильны (по отношению к водороду), чем в межзвездной среде. Это обстоятельство означает, что выброшенный во время взрыва материал до этого претерпел сложную химическую трансформацию, обусловленную ядерными реакциями. Наблюдения последних 20 лет показали, что эти волокна весьма нестабильны: они появляются как бы в «пустом» пространстве, существуют десяток лет и исчезают. Большие волокна иногда распадаются на малые, причем относительные скорости отдельных частей крупных волокон весьма велики. Вообще, многое в природе физических процессов, происходящих в волокнах Кассиопеи А, пока остается еще не ясным.

Из наблюдаемой скорости расширения систем волокон Кассиопеи А можно получить возраст этого объекта. Оказывается, что взрыв звезды, явившийся причиной образования Кассиопеи А, произошел около 1667 г. (примерно между 1659 и 1675 г.). Представляется удивительным, почему европейские астрономы, которые так успешно наблюдали почти за столетие до этого Новые Тихо и Кеплера, решительно ничего не заметили в созвездии Кассиопеи. Почему же это так получилось? Почему «прозевали» вспышку этой сверхновой в эпоху, когда в Европе уже были обсерватории? Конечно, видимая яркость звезды зависит не только от мощности ее излучения, но и от расстояния до нее. Каково же расстояние до Кассиопеи А?

Первая надежная оценка расстояния до этого источника была получена радиоастрономическим методом. Метод основывается на изучении линии поглощения в радиоспектре источника на волне 21 см. Эта линия образуется в результате поглощения радиоизлучения межзвездными атомами водорода. Так как последние концентрируются преимущественно в спиральных рукавах Галактики, которые имеют друг относительно друга разные скорости, то это отразится на «профиле» линии, которая разобьется на несколько компонент, соответствующих водородному поглощению в различных рукавах. Так как в направлении на Кассиопею А существуют три спиральных рукава, а профиль линии поглощения состоит из двух резко выраженных провалов интенсивности, то сразу же можно сделать вывод, что источник радиоизлучения расположен где-то между вторым и третьим рукавом спиральной структуры (рис. 16.7), откуда следует, что расстояние до него около трех тысяч парсек (т. е. около десяти тысяч световых лет). Такое же расстояние получается из сравнения наблюдаемой скорости «расползания» волокон туманности по небесной сфере (они, естественно, определяются в угловых единицах, например, секундах дуги в год) со скоростью волокон по лучу зрения, определяемой из измеренного доплеровского смещения спектральных линий.

Рис. 16.7: Схема, поясняющая радиоастрономический метод определения расстояния до туманности Кассиопея А.

Итак, расстояние до Кассиопеи А около 3000 пс. Если бы не было межзвездного поглощения света, видимая величина вспыхнувшей сверхновой (абсолютная величина которой, как можно полагать, была около -20m; см. § 15) была бы -7m, т. е. она должна была казаться, пожалуй, даже ярче, чем сверхновая 1054 г., так поразившая китайцев, японцев и, возможно аборигенов Северной Америки. Чтобы такое удивительное явление, случившееся в области неба, которая никогда не опускается под горизонт, было бы не замечено, следует принять, что поглощение света должно быть как минимум 7—8 величин (т. е. больше, чем в 1000 раз), и еще дополнительно предположить, что в то время над всей Европой стояла несколько недель подряд ненастная погода, которая как раз случилась тогда, когда сверхновая была в максимуме своего блеска... Конечно, в принципе это может быть. Но поглощение света в направлении Кассиопеи А хотя и велико, но не настолько: около 4,3 звездной величины. О возможной причине ненаблюдаемости этой сверхновой см. § 18.

Выше уже упоминалось, что, кроме быстро движущихся волокон, в Кассиопее А наблюдаются почти стационарные конденсации. Скорее всего, эти конденсации представляют собой сжатый ударной волной межзвездный газ. Похоже, однако, на то, что химический состав этих конденсаций не совсем обычен: азот там аномально обилен по отношению к кислороду. Если это так, то остается только считать, что ударная волна от взрыва распространялась уже не по межзвездной среде, а по оболочке, «вытекшей» из звезды, которая взорвалась как сверхновая. Таким образом, все особенности весьма своеобразного остатка сверхновой Кассиопеи А объясняются молодостью этого объекта.

В 1966 г. было обнаружено рентгеновское излучение от Кассиопеи А. В отличие от рентгеновского излучения от других, гораздо более «старых» остатков сверхновых, рентгеновское излучение от Кассиопеи А значительно жестче. Как мощность, так и спектр рентгеновского излучения Кассиопеи А естественно объясняется теорией, развитой выше. Заметим в этой связи, что в окрестностях Кассиопеи А плотность межзвездного газа повышена (Ne

10—20 см– 3), что обеспечивает необходимую мощность рентгеновского излучения, которая пропорциональна Ne2R3, где R — радиус туманности. Большая жесткость теплового рентгеновского излучения от Кассиопеи А объясняется огромной температурой (
3
107 К) плазмы за фронтом волны, что в свою очередь объясняется большой скоростью расширения этой туманности, т. е. в конечном результате — ее молодостью.

Перейдём теперь к основному вопросу о природе радиоизлучения от остатков вспышек сверхновых. В настоящее время обнаружено радиоизлучение практически от всех ионизованных газовых туманностей, как «диффузных», так и планетарных. Однако это излучение, если можно так выразиться, носит тривиальный характер. Оно является чисто тепловым, и его интенсивность и спектр определяются известным законом Кирхгофа:

(16.5)

где I

 — наблюдаемая интенсивность, B
(T) = 2kT/
2 — интенсивность излучения абсолютно черного тела,
 — коэффициент поглощения на данной частоте, l — протяженность источника в направлении луча зрения. Величина
l носит название «оптической толщи». При достаточно большой оптической толще

Поделиться:
Популярные книги

Измена. Не прощу

Леманн Анастасия
1. Измены
Любовные романы:
современные любовные романы
4.00
рейтинг книги
Измена. Не прощу

Неудержимый. Книга II

Боярский Андрей
2. Неудержимый
Фантастика:
городское фэнтези
попаданцы
5.00
рейтинг книги
Неудержимый. Книга II

Возвышение Меркурия. Книга 16

Кронос Александр
16. Меркурий
Фантастика:
попаданцы
аниме
5.00
рейтинг книги
Возвышение Меркурия. Книга 16

Измена. Осколки чувств

Верди Алиса
2. Измены
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Измена. Осколки чувств

Отборная бабушка

Мягкова Нинель
Фантастика:
фэнтези
юмористическая фантастика
7.74
рейтинг книги
Отборная бабушка

Измена. Ребёнок от бывшего мужа

Стар Дана
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Измена. Ребёнок от бывшего мужа

Неверный. Свободный роман

Лакс Айрин
Любовные романы:
современные любовные романы
эро литература
5.00
рейтинг книги
Неверный. Свободный роман

Бывшие. Война в академии магии

Берг Александра
2. Измены
Любовные романы:
любовно-фантастические романы
7.00
рейтинг книги
Бывшие. Война в академии магии

Ты нас предал

Безрукова Елена
1. Измены. Кантемировы
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Ты нас предал

В теле пацана 6

Павлов Игорь Васильевич
6. Великое плато Вита
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
В теле пацана 6

Вернуть невесту. Ловушка для попаданки 2

Ардова Алиса
2. Вернуть невесту
Любовные романы:
любовно-фантастические романы
7.88
рейтинг книги
Вернуть невесту. Ловушка для попаданки 2

Его маленькая большая женщина

Резник Юлия
Любовные романы:
современные любовные романы
эро литература
8.78
рейтинг книги
Его маленькая большая женщина

Инферно

Кретов Владимир Владимирович
2. Легенда
Фантастика:
фэнтези
8.57
рейтинг книги
Инферно

Золушка вне правил

Шах Ольга
Любовные романы:
любовно-фантастические романы
6.83
рейтинг книги
Золушка вне правил