Звезды: их рождение, жизнь и смерть
Шрифт:
Интервал времени, в течение которого наблюдается излучение от пульсаров (так называемое «окно»), обычно составляет около 1/30 от периода. На рис. 21.4 приведена диаграмма, дающая зависимость ширины «окна» от периода пульсаров. Ширину «окна» удобно измерять в угловых единицах (360° соответствуют полному периоду пульсаров). На этом рисунке хорошо видно, что точки, соответствующие различным пульсарам, группируются около прямой, соответствующей ширине «окна» 9°.
|
Рис. 21.4: Зависимость ширины «окна» пульсаров от их периода. |
|
Рис. 21.5: «Дрейф» импульсов в пределах «окна». |
Хотя ширина «окна» для данного пульсара остается почти постоянной, отдельные детали профиля («истинного»,
Из разных вариаций, которым подвержены профили импульсов пульсаров, едва ли не самым загадочным является полное прекращение радиоизлучения в течение значительного количества периодов. Так, излучение пульсара PSR 1237+25 внезапно «пропадает» на несколько минут, после чего «оживает» без малейшего сбоя периода. У пульсара PSR 0809+74 иногда «пропадает» несколько периодов. Такие явления, скорее всего, указывают на то, что по каким-то причинам у вращающейся нейтронной звезды внезапно прекращается радиоизлучение. В этой связи следует подчеркнуть, что детали основного процесса радиоизлучения пульсаров, приведшего к их открытию, все еще далеки от ясности. Ниже мы еще вернемся к этой проблеме.
Хотя природа радиоизлучения пульсаров пока еще довольно темна и загадочна, само по себе это излучение открыло новые, очень богатые возможности изучения межзвездной среды. Астрономы сразу же по достоинству оценили замечательную особенность этого радиоизлучения: его импульсный характер. Весьма полезным является и то, что радиоизлучение в ряде случаев оказалось линейно поляризованным. Все эти свойства пульсарного радиоизлучения позволяют использовать его как весьма эффективный зонд для изучения межзвездной среды. Прежде всего нашло себе применение явление дисперсии импульсов радиоизлучения от пульсаров в межзвездной среде. Об этом интереснейшем явлении стоит поговорить более подробно. Одинакова ли скорость распространения всех электромагнитных волн в межзвездной среде? Ведь ясно, что даже очень маленькая разница в скорости распространения электромагнитных волн различной длины в принципе могла бы дать вполне измеримый эффект, так как при огромных межзвездных расстояниях происходило бы непрерывное «накопление» разности времен прихода импульсов на разных волнах. На рубеже этого столетия наш самобытный астроном Г. А. Тихов пытался обнаружить такой эффект у затменно-двойных звезд: если бы эффект существовал, моменты звездных затмений в лучах разного цвета (например, синего и красного) должны были бы отличаться. Тогдашние сведения о природе межзвездной среды, однако, были даже не в зачаточном, а просто в нулевом состоянии. Только спустя несколько лет Гартманом были открыты линии межзвездного кальция, положившие начало изучению межзвездной среды (см. § 2). Теперь-то мы хорошо знаем, сколь несостоятельна была попытка Г. А. Тихова обнаружить межзвездную дисперсию света. Ведь плотность межзвездной среды настолько мала, что из-за обычной дисперсии даже на пути в 1000 световых лет импульс красного света опередит одновременно с ним излученный импульс синего света всего лишь на ничтожную долю секунды.
Открытие космического радиоизлучения коренным образом изменило старую проблему обнаружения дисперсии электромагнитных волн в межзвездной среде. Последнюю всегда можно рассматривать как плазму (даже в «зонах Н I», где водород не ионизован; см. § 2). Теория распространения и дисперсии радиоволн в плазме является очень хорошо разработанным отделом макроскопической физики. Приведем только выражение для показателя преломления электромагнитных волн в плазме, в которой магнитное поле отсутствует:
| (21.1) |
Здесь Ne — концентрация свободных электронов в плазме,
Как видно из формулы (21.1), показатель преломления плазмы для радиоволн меньше единицы. Как известно из элементарного курса физики, скорость распространения электромагнитных волн в среде с показателем преломления n 3ф = c/n, где c = 3
| (21.2) |
а время распространения группы волн
Из этих формул следует, что разница времени распространения группы волн в среде (плазме) и в вакууме (т. е. запаздывание группы) будет равна
| (21.3) |
где величина D = NeR — число свободных электронов в цилиндре, площадь основания которого равна одному квадратному сантиметру, а образующая равна R. В формуле (21.3) частота
| (21.4) |
Чтобы почувствовать, велика ли эта величина или мала, сделаем численный расчет. Допустим, что
Техника современной радиоастрономии позволяет определять величину меры дисперсии D для каждого пульсара с высокой точностью: до одной стотысячной. Такая высокая точность позволяет в отдельных случаях измерять вариации величины D. Особо интересны вариации меры дисперсии для пульсара в Крабовидной туманности. В этом случае D = 57 см– 3
Если бы концентрация свободных электронов в межзвездной среде была известна с полной надежностью, знание D для того или иного пульсара позволило бы сразу же определить точное расстояние до него. В действительности, однако, это далеко не так. Осложняющим обстоятельством является то, что концентрация свободных электронов Ne меняется в различных областях межзвездной среды в довольно широких пределах (см. § 2).
Расчеты показывают, что в зонах Н I, занимающих большую часть межзвездной среды, Ne