...И мир загадочный за занавесом цифр. Цифровая связь
Шрифт:
Первый троичный код был изобретен в 1952 г. инженерами американской компании "Bell". Преобразование двоичных чисел в троичные происходило в нем по довольно простому алгоритму: 0 оставался без изменения, а 1 заменялась поочередно то на +1,то на -1. Например, цифровая двоичная последовательность 1100111001 приобретала после преобразования вид: +1 -100 +1 -1 +100 -1. Заметьте, данный алгоритм неудовлетворяет правилам перехода из двоичной системы счисления в троичную. Поэтому такой код называют квазитроичным ("квази" означает: как бы, почти). У него есть еще одно название - код с чередованием полярности импульсов (ЧПИ).
Достоинством кода оказалось то, что
Изобретенный почти 50 лет назад этот простейший троичный код и по сей день является наиболее распространенным в ИКМ-системах передачи. В регенераторах таких систем добавляется еще один компаратор, который принимает решение о наличии или отсутствии отрицательного импульса, сравнивая его с отрицательным же порогом. Впрочем, можно без "переделки" использовать и регенераторы двоичных сигналов, поскольку троичный код очень легко превратить в двоичный с помощью обычного выпрямителя (например, точно такого же, какой стоит в наших телевизорах для получения постоянного тока из переменного осветительной сети). В подобном выпрямителе отрицательные импульсы "переворачиваются" и становятся положительными. Троичный код превращается в двоичный!
Добавим, что описанное преобразование двоичных цифр в троичные не является единственным. Ниже в таблице показано, как 4-разрядные слова двоичного алфавита (т. е. алфавита, состоящего всего из двух символов 0 и 1) можно закодировать 3-разрядными словами на основе алфавита с тремя символами -1, 0 и +1. Заметьте, теперь вместо каждых четырех импульсов нужно передавать в линию только три. Появляется возможность на месте каждого четвертого импульса цифрового потока передать дополнительные символы, т. е. увеличить объем передаваемой информации.
Мы ограничились рассмотрением лишь простейших кодов, обнаруживающих и исправляющих ошибки. Существует множество более сложных кодов, которые могут исправлять в принятой комбинации цифр не одну, а сразу несколько ошибок.
Разработкой таких помехоустойчивых кодов занимается математика. Для многих непосвященных людей теория чисел (мы привыкли называть ее арифметикой) ограничивается простейшими действиями над числами: сложением, вычитанием, умножением и делением. И вероятно, мало кто из читателей слышал о таких ее разделах, как "группы", "кольца", "поля", "пространства" и т. д. Поэтому дальнейшее знакомство с кодами требует серьезной математической подготовки. Но и тех примеров, которые мы привели в этой главе, достаточно, чтобы понять,
"Битва" с помехами не окончена. В ней участвует большая армия ученых - математиков, физиков, электронщиков, химиков и др. Предпринимаются попытки создать электрические кабели из сверхпроводников, в которых полностью отсутствовали бы тепловые шумы и которые практически не ослабляли бы сигнал. Совершенствуется изоляция проводников, ищутся новые виды изоляционных материалов, способных надежно защитить проводники от влияния внешних помех. Синтезируются новые типы оптических волокон, и на их основе создаются новые оптические кабели - линии связи третьего тысячелетия. Возможно, кто-то из вас, молодых читателей, станет участником этого грандиозного, затянувшегося на века "сражения".
Заключение
Первый тост наш - за науку
И за юношей - второй!
Пусть горит им светоч знанья
Путеводною звездой! А.Н. Плещеев
Наши рассказы о цифровой связи подошли к концу. Но это вовсе не означает, что мы ознакомились со всеми ее направлениями и говорить больше не о чем. Напротив, за рамками книги осталась масса интереснейших вопросов. Вот только некоторые из них:
• цифровые сети связи;
• электронная коммутация цифровых потоков;
• цифровая голография и объемное цифровое телевидение;
• цифровая магнитная звукозапись;
• применение систем цифровой связи в биологии и медицине;
• использование микропроцессоров в цифровой связи;
• искусственный голос;
• цифровые синтезаторы человеческой речи.
Обо всем написать в одной книге просто невозможно. И мы надеемся, что новые книги, посвященные и электронной коммутации, и цифровой звукозаписи, и цифровому голографическому телевидению, и еще многим-многим другим проблемам цифровой связи, будут все же написаны и найдут своего массового читателя.
Научно-технический прогресс не "топчется” на месте, а стремительно рвется вперед. Пройдут годы, и мы станем свидетелями новых побед человеческого гения в области обмена информацией.
Рекомендуемая литература
Ван дер Варден Б.Л. Пробуждающаяся наука: Математика Древнего Египта, Вавилона и Греции / Пер. с год.; Под ред. И.Н. Веселовского.
– М.: Физматгиз. 1959.
– 460 с.
Крук Б.И., Попантонопуло В.Н., Шувалов В.П. Телекоммуникационные системы и сети.
– Новосибирск: СП "Наука" РАН, 1998.
– 536 с.
Оокоси Т. Оптоэлектроника и оптическая связь/ Пер. с япон. А.А. Генина; Под ред. М.И. Беловолова.
– М.: Мир. 1988.
– 96 с.
Партала О.Н. Цифровая электроника.
– Спб.: Наука и техника, 2000.
– 208 с.
Петрович Н.Т., Цуриков В.М. Путь к изобретению.
– М.: Мол. гвардия. 1986.
– 272 с.
Прокис Д.Д. Цифровая связь / Пер. с англ.; Под ред. Д.Д. Кловского.
– М.: Радио и связь, 2000.
– 797 с.