100 рассказов о стыковке. Часть 1
Шрифт:
После окончания встречи мы, засучив рукава, приступили к детальному конструированию. К весне 1972 года рабочие чертежи были подготовлены, а состоявшаяся в апреле встреча в Хьюстоне, на которой согласовали интерфейсы, открыла дорогу для изготовления моделей. Совместные испытания наметили на конец года.
Модели назывались масштабными, то есть выполненными в меньшем масштабе, чем настоящие АПАСы. Масштабный коэффициент по предложению американцев выбрали несколько необычным, нецелым: 1:2,5. Они интерпретировали его как 2:5, но их единицам измерения удивляться не приходилось. Тем не менее интуиция и здравый смысл наших коллег не подвели, масштаб они угадали правильно. В этом мы убедились, когда
Работа проводилась независимо, параллельно в обеих странах. Приехав в Хьюстон в июле 1972 года, мы не ожидали увидеть уже готовые модели. В это время наши механизмы находились в процессе изготовления. Сроки совместных испытаний были еще далеки, но, возвратившись в Москву и заручившись поддержкой Бушуева, стыковщики вместе с заводчанами срочно приняли меры для ускорения работ. Это был очень полезный урок. На всех последующих этапах мы уже не отставали от своих партнеров ни в подготовке документации, ни в изготовлении оборудования.
Нужно еще раз подчеркнуть, что в изготовлении наши модели оказались более трудоемкими, чем американские. Модели воспроизводили будущие полномасштабные конструкции, поэтому они были полностью действующими. Ведь нам требовалось не только проверить общую конфигурацию и взаимодействующие элементы, но и воссоздавать работу дифференциального механизма, поскольку именно он вызывал сомнения. Для меня эта задача была тогда главной.
Производство моделей завершилось уже к концу августа. Для динамических испытаний построили специальный стенд. Первый прототип этого стенда с горизонтальной тележкой и качающимся грузом спроектировали еще в середине 60–х годов. Его построили сначала в Казани, а затем в Азове для проверок стыковочных механизмов штырь—конус. На стенде хорошо имитировались основные фазы стыковки, это позволяло проверить работоспособность нового стыковочного механизма. После довольно продолжительных хлопот удалась добиться специального помещения: нам выделили небольшое здание, где раньше располагалась ацетиленовая станция, рядом с приборным корпусом. С «ацетиленкой» связан важный этап развития стыковочной техники; здесь позднее испытывались полномасштабные АПАСы, включая тот, который состыковал корабли «Союз» и «Аполлон» в космосе.
Помню, с каким нетерпением я ожидал, когда умельцы, настоящие файн–механики, из инструментального цеха изготовят шарико–винтовые пары (ШВП), а сборщики из цеха электромеханики соберут первую модель. Каждый день я бегал в оба цеха, на первое и второе производство, чтобы не пропустить важного момента. И все?таки мне это не удалось, откровенно говоря, я просто проспал. Утром Бобров рассказал, что сборку закончили ровно в 12 часов ночи. Недаром говорят, что настоящие чудеса происходят в полночь: механизм заработал.
Уже первая проверка еще на сборочном верстаке убедила, что основная идея была правильной, стыковочный механизм дифференциального типа оказался вполне работоспособным. Динамические испытания на стенде подтвердили это. Основные сомнения сразу отпали. Это был первый настоящий успех, такой важный на этом этапе.
Руководство настолько поверило в новую конструкцию, что решилось пригласить к нам самого Д. Устинова, в те годы секретаря ЦК КПСС, кандидата в члены Политбюро. Мне пришлось выступить в качестве гида в нашей скромной «ацетиленовой» лаборатории. Для стыковщиков это было большой честью: всемогущий Устинов очень редко
Испытания масштабных моделей сыграли большую роль в становлении нашего АПАСа, позволив не только проверить новый дифференциальный механизм, но и значительно усовершенствовать его. Пожалуй, самым важным оказалось то, что модели заставили думать, как упростить конструкцию, как одновременно сделать ее более простой и эффективной.
Еще раньше мне отчасти помогла критика оппонентов. Уже при выпуске чертежей на масштабную модель стало ясно, насколько сложным получился механизм, который связывал между собой штанги. Они соединялись при помощи десяти дифференциалов: пять основных обеспечивали пять степеней подвижности кольца, а пять дополнительных — работу пружин. К тому же большое число подвижных элементов увеличило потери на трение. Эти недостатки заставляли искать пути упрощения схемы. К счастью, такой путь нашелся и оказался действительно блестящим: в результате удалось сократить число дифференциалов в пять раз, вместо десяти их осталось всего два!
Только эта измененная кинематика механизма сразу превратила АПАС в законченную конструкцию, которая стала по–настоящему смотреться, «а значит, должна летать». Именно она сработала на орбите 19 июля 1975 года и продемонстрировала свои достоинства в неожиданно тяжелых условиях второй стыковки, которую заранее назвали тестовой, то есть испытательной. Позднее кинематика стыковочного механизма практически без изменений перекочевала в АПАСы нового поколения. В начале 90–х годов агрегаты под названием АПАС-89 установили на американский «Спейс Шаттл». И они стали стыковывать «Орбитеры» с нашим «Миром», а затем с МКС — международной космической станцией.
Недаром английская пословица гласит: потребность — мать изобретательства. Сейчас трудно восстановить подробности того, как пришла в голову эта идея, как произошло то, что называется словом «осенило». Такие моменты, когда работает, наверно, подкорковое мышление, в течение моей инженерной карьеры случались лишь считанное число раз.
Механизм винт—гайка в принципе имеет три степени подвижности, поэтому он почти неисчерпаем. В частности, его можно использовать как дифференциал. Именно это и требовалось найти и применить, эти лишние дифференциалы, которые обеспечили необходимую подвижность кольцу с пятью степенями свободы.
В масштабной модели вращались только гайки, а винты прикреплялись к кольцу через 2–степенной шарнир. Как оказалось, достаточно дать дополнительную вращательную свободу винтам и связать их попарно в каждой паре: винты — между собой, а гайки — между собой. Правда, дополнительно пришлось применить винты с правой и левой нарезкой. При этом 2–степенные шарниры винтов превратились в 3–степенные. Самое главное заключалось в том, что в результате осталось только два настоящих дифференциала (меньше, чем в автомобиле–вездеходе). Три дополнительные степени подвижности обеспечили три пары винтов, получивших дополнительную свободу вращения. Этим, однако, упрощение не закончилось.
В старой масштабной кинематике каждую степень подвижности обслуживали по паре дифференциалов, поэтому в общей сложности их набралось десять. Было что выбрасывать — целых восемь непростых компонентов!
Не могу удержаться и еще раз не сказать о том, что осталось только два дифференциала: их число уменьшилось в пять раз!
Наверное, такое не могло появиться сразу, без чертежей и действующей живой модели. Только после этого левше удалось «подковать блоху». Еще раз отдаю дань удаче, которая и привела к созданию хитроумной, но работоспособной и очень эффективной конструкции. Она воплотилась в виде механизма, изящного и непревзойденного, позднее поражавшего инженеров и ученых–механиков всего мира.