Чтение онлайн

на главную

Жанры

Шрифт:

В 1878 году Сименс изобрел электрическую дуговую печь, применявшуюся прежде всего при плавке железа. Она состояла из угольного или графитового тигля, являвшегося одним полюсом. Вторым полюсом служил расположенный сверху угольный электрод, который перемещался внутри тигля в вертикальной плоскости для регулирования электрического режима. При заполнении тигля шихтой она нагревалась и расплавлялась или электрической дугой или за счет сопротивления самой шихты при прохождении через нее тока. Никаких внешних источников тепла для печи Сименса не требовалось. Создание этой печи стало важным событием не только для черной, но и для цветной металлургии.

Теперь все условия для электролитического способа производства алюминия были налицо. Дело оставалось за разработкой технологии процесса. Вообще говоря, алюминий можно получать непосредственно из глинозема, но трудность заключалась в том, что оксид алюминия очень тугоплавкое соединение, которое переходит в жидкое состояние при температуре около 2050 градусов. Для того чтобы нагреть глинозем до такой температуры и затем поддерживать ее во время реакции, требовалось огромное количество электроэнергии. В то время этот способ казался неоправданно дорогим. Химики искали иной путь, пытаясь выделить алюминий из какого-нибудь другого менее тугоплавкого вещества. В 1885 году эту задачу независимо друг от друга разрешили француз Эру и американец Холл.

Любопытно, что обоим в момент, когда они совершили свое выдающееся открытие, было по 22 года (и тот и другой родились в 1863 г.). Эру еще с 15 лет, после того как познакомился с книгой Девилля, постоянно думал об алюминии. Основные принципы электролиза он разработал, еще будучи студентом, в 20 лет. В 1885 году после смерти отца Эру унаследовал небольшую кожевенную фабрику близ Парижа и немедленно принялся за опыты. Он приобрел электрогенератор Грамма и сначала попробовал разложить электрическим током водные растворы солей алюминия. Потерпев на этом пути неудачу, он решил подвергнуть электролизу расплавленный криолит — минерал, в состав которого входит алюминий (химическая формула криолита Na3AlF6). Опыты Эру начал в железном тигле, который служил катодом, а анодом являлся опущенный в расплав угольный стержень. Поначалу ничего не обещало успеха. При пропускании тока железо тигля вступило в реакцию с криолитом, образовав легкоплавкий сплав. Тигель расплавился, и содержимое его вылилось наружу. Никакого алюминия Эру таким путем не получил. Однако криолит представлял собой очень заманчивое сырье, поскольку плавился при температуре всего 950 градусов. Эру пришла мысль, что расплав этого минерала можно использовать для растворения более тугоплавких солей алюминия. Это была очень плодотворная идея. Но какую соль избрать для опытов? Эру решил начать с той, которая давно уже служила сырьем для химического производства алюминия — с двойного хлорида алюминия и натрия. И тут при проведении эксперимента произошла ошибка, которая и привела его к замечательному открытию. Расплавив криолит и добавив к нему двойной хлорид алюминия и натрия, Эру неожиданно заметил, что угольный анод начал быстро обгорать. Объяснение этому могло быть только одно — в ходе электролиза на аноде стал выделяться кислород, вступавший в реакцию с углеродом. Но откуда мог взяться кислород? Эру внимательно изучил все купленные реактивы и тут обнаружил, что двойной хлорид разложился под действием влаги и превратился в глинозем. Тогда все происшедшее стало ему понятно: оксид алюминия (глинозем) растворился в расплавленном криолите и молекула Al2O3 распалась на ионы алюминия и кислорода. Далее в ходе электролиза отрицательно заряженные ионы кислорода отдавали аноду свои электроны и восстанавливались в химический кислород. Но в таком случае, какое вещество восстанавливалось на катоде? Им мог быть только алюминий. Поняв это, Эру уже намеренно добавил глинозем к расплаву криолита и таким образом получил на дне тигля корольки металлического алюминия. Так был открыт применяющийся по сей день способ получения алюминия из глинозема, растворенного в криолите. (Криолит не участвует в химической реакции, его количество в ходе электролиза не уменьшается — он используется здесь только как растворитель. Процесс идет следующим образом: к расплаву криолита периодически добавляют порциями глинозем; в результате электролиза на аноде выделяется кислород, а на катоде — алюминий.) На два месяца позже точно такой же способ производства алюминия открыл американец Холл.

На свое изобретение Эру в апреле 1886 года получил первый патент. В нем он еще не отказался от внешнего нагревания ванны с электролитом для поддержания нужной температуры расплава. Но уже в следующем году он взял второй патент на способ получения алюминиевой бронзы, в котором отказался от внешнего нагрева и писал, что «электрический ток производит достаточное количества тепла для того, чтобы глинозем поддерживать в расплавленном состоянии».

Поскольку никто во Франции не заинтересовался его открытием, Эру уехал в Швейцарию. В 1887 году компания «Сыновья Негер» подписала с ним контракт о реализации его изобретения. Вскоре было основано Швейцарское металлургическое общество, которое на заводе в Нейгаузене развернуло производство сначала алюминиевой бронзы, а потом чистого алюминия.

Промышленную установку для электролиза алюминия, также как и всю технологию производства, разработал Эру. Печь представляла собой железный ящик, изолированно установленный на земле. Поверхность ванны изнутри была покрыта толстыми угольными пластинами, которые являлись отрицательным электродом (катодом). Сверху в ванну опускался положительный электрод (анод), который представлял собой пакет угольных стержней. Электролиз происходил при очень сильном токе (порядка 4000 ампер), но при небольшом напряжении (всего 12-15 вольт). Большая сила тока, как уже говорилось в предыдущих главах, приводила к значительному повышению температуры. Криолит быстро плавился, и начиналась электрохимическая реакция восстановления, в ходе которой металлический алюминий собирался на угольном полу ванны.

Уже в 1890 году завод в Нейгаузене получил свыше 40 тонн алюминия, а вскоре стал выпускать по 450 тонн алюминия в год. Успехи швейцарцев вдохновили французских промышленников. В Париже образовалось электротехническое общество, которое в 1889 году предложило Эру стать директором вновь основанного алюминиевого завода. Через несколько лет Эру основал в разных частях Франции, где имелась дешевая электрическая энергия, еще несколько алюминиевых заводов. Цены на алюминий постепенно упали в десятки раз. Медленно, но неуклонно этот замечательный металл стал завоевывать свое место в человеческой жизни, сделавшись вскоре столь же необходимым, как известные с глубокой древности железо и медь.

63. БУРЕНИЕ НА НЕФТЬ

До появления керосина во многих странах основным средством освещения служили восковые свечи и китовый жир. Ради последнего были истреблены сотни тысяч китов. Вскоре киты стали редкостью, и появилась необходимость в замене китового жира каким-нибудь другим маслом. Тогда прибегли к смеси скипидара со спиртом; делали также попытки добывать масло из угля посредством перегонки. В 1844 году американский химик Абрам Геснер получил из угля осветительное масло, которое он назвал «керосином». Но впоследствии название «керосин» закрепилось за очищенной нефтью. Способ получения керосина из нефти был открыт в 1857 году Феррисом. В отличие от сырой нефти (которую тоже пытались применять для освещения) керосин горел намного лучше, причем без копоти и чада, что и обеспечило успех новому изобретению. С этого времени темпы добычи нефти стали неуклонно возрастать.

Тогда же в Нью-Йорке было основано общество для разработки нефтяных источников в штате Пенсильвания. Добыча поначалу велась самым примитивным колодезным способом, при котором рабочие-нефтяники вырывали глубокую яму и черпали из нее нефть как воду ведрами. У одного из руководителей общества, Бисселя, вскоре явилась мысль добывать нефть при помощи буровых скважин. Идея эта кажется очень простой, однако прежде она никому не приходила в голову. Биссель узнал, что с помощью бурения уже много лет добывают воду из глубинных соляных источников (из этой воды потом выпаривали соль), причем многие из этих источников были брошены, потому что вместе с водой содержали нефть. Таким образом, можно было заключить, что нефть и вода находятся под землей поблизости друг от друга и ничего не мешает выкачивать из скважины нефть с помощью насосов точно так же, как это делали с водой. Многие, впрочем, отнеслись к этому предложению с недоверием.

Искусство бурения земли к середине XIX века прошло долгий путь развития, но в целом стояло еще на достаточно примитивном уровне. Преобладающим способом было так называемое ударное бурение, при котором скважина выдалбливалась в породе ударами клинообразного разрушающего инструмента — плоского долота или бура. Бурение происходило при этом следующим образом. Сначала выбирали место под скважину. Затем строили вышку и тщательно устанавливали направляющую трубу. Буровая вышка служила станком для подъема бура. Бурение осуществлялось ударами. На конце шеста укреплялась тяжелая головка с резцами: при помощи каната, перекинутого через блок, ее опускали, а затем снова поднимали. Силой своей тяжести она дробила породу. Чтобы скважина получила правильную форму, долото перед каждым ударом поворачивали на определенный угол. Когда бур углублялся в землю на всю свою длину, к нему прикручивали штангу длиной около 3 м. В пробуренную скважину для крепления стенок опускали железные трубы. Для извлечения раздробленных частиц породы их смачивали водой и превращали в грязь, которую периодически извлекали наверх при помощи желонки — длинного ведра с клапаном на конце. Понятно, что каждый раз для этого приходилось вынимать из скважины бурильный инструмент и развинчивать его на части. На эту работу (подъем, развинчивание и свинчивание ударного инструмента) уходило огромное количество рабочего времени. Если грунт был мягкий, за день можно было пройти до 18 м, но обычно успевали пробурить не более 3-4 м. Чем большей глубины достигал бур, тем медленнее шла работа.

В 1846 году Фовель изобрел способ промывки скважин водяной струей. Он начал употреблять полые штанги и нагнетать в них воду, которую затем выкачивали между стенок бура и скважины вместе с обломками размельченной породы. Это изобретение составило эру в истории буровой техники. При таком устройстве бурения не могло быть никогда скопления грязи на дне скважин и не было надобности в постоянном подъеме инструмента. Этим изобретением Фовеля трудности бурения были уменьшены на 9/10, и оно сразу начало бурно развиваться. Стоимость буровых работ уменьшилась в 10 раз.

Популярные книги

Долгие дороги сказок (авторский сборник)

Сапегин Александр Павлович
Дороги сказок
Фантастика:
фэнтези
9.52
рейтинг книги
Долгие дороги сказок (авторский сборник)

Релокант. По следам Ушедшего

Ascold Flow
3. Релокант в другой мир
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Релокант. По следам Ушедшего

Кодекс Крови. Книга I

Борзых М.
1. РОС: Кодекс Крови
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Крови. Книга I

Эфир. Терра 13. #2

Скабер Артемий
2. Совет Видящих
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Эфир. Терра 13. #2

Кровь Василиска

Тайниковский
1. Кровь Василиска
Фантастика:
фэнтези
попаданцы
аниме
4.25
рейтинг книги
Кровь Василиска

Измена. Избранная для дракона

Солт Елена
Любовные романы:
любовно-фантастические романы
3.40
рейтинг книги
Измена. Избранная для дракона

Беглец

Кораблев Родион
15. Другая сторона
Фантастика:
боевая фантастика
попаданцы
рпг
5.00
рейтинг книги
Беглец

Первогодок

Губарев Алексей
3. Тай Фун
Фантастика:
фэнтези
5.00
рейтинг книги
Первогодок

Инкарнатор

Прокофьев Роман Юрьевич
1. Стеллар
Фантастика:
боевая фантастика
рпг
7.30
рейтинг книги
Инкарнатор

Проданная невеста

Wolf Lita
Любовные романы:
любовно-фантастические романы
5.80
рейтинг книги
Проданная невеста

Школа Семи Камней

Жгулёв Пётр Николаевич
10. Real-Rpg
Фантастика:
фэнтези
рпг
5.00
рейтинг книги
Школа Семи Камней

Дядя самых честных правил 7

Горбов Александр Михайлович
7. Дядя самых честных правил
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Дядя самых честных правил 7

Чехов

Гоблин (MeXXanik)
1. Адвокат Чехов
Фантастика:
фэнтези
боевая фантастика
альтернативная история
5.00
рейтинг книги
Чехов

Я тебя верну

Вечная Ольга
2. Сага о подсолнухах
Любовные романы:
современные любовные романы
эро литература
5.50
рейтинг книги
Я тебя верну