120 практических задач

на главную

Жанры

Шрифт:

1. Построение простой полносвязной нейронной сети для классификации

Задача: Классификация изображений рукописных цифр (MNIST).

Для построения простой полносвязной нейронной сети для классификации изображений рукописных цифр из набора данных MNIST можно использовать библиотеку TensorFlow и Keras.

```

Полносвязные нейронные сети, также известные как многослойные перцептроны (MLP), представляют

собой вычислительные модели, вдохновленные биологическими нейронными сетями. Они состоят из слоев нейронов, которые преобразуют входные данные в выходные через последовательность взвешенных сумм и нелинейных функций активации. В полносвязных слоях каждый нейрон связан со всеми нейронами предыдущего слоя, что позволяет эффективно обучать модели для различных задач, включая классификацию изображений.

Для задачи классификации изображений рукописных цифр из набора данных MNIST используется полносвязная нейронная сеть. Датасет MNIST состоит из 60,000 обучающих и 10,000 тестовых изображений размером 28x28 пикселей, представляющих цифры от 0 до 9. Архитектура сети включает входной слой, преобразующий каждое изображение в одномерный массив длиной 784, один или несколько скрытых слоев с функцией активации ReLU для моделирования сложных зависимостей, и выходной слой с 10 нейронами, использующими функцию softmax для получения вероятностей классов.

Процесс обучения нейронной сети начинается с инициализации весов и смещений случайным образом. Входные данные проходят через сеть, и на выходном слое получаем предсказания. Затем рассчитывается функция потерь, определяющая разницу между предсказанными и истинными значениями. С помощью алгоритма обратного распространения ошибки вычисляются градиенты функции потерь по всем параметрам сети, и оптимизатор обновляет веса, чтобы уменьшить ошибку. Этот процесс повторяется для заданного числа эпох или до достижения желаемой точности.

Основные элементы модели включают полносвязные слои (Dense Layer), активационные функции (например, ReLU и softmax), функцию потерь (например, sparse_categorical_crossentropy) и оптимизатор (например, Adam). Полносвязные нейронные сети эффективны для задач классификации благодаря своей способности учиться на данных и выявлять сложные паттерны. В случае с MNIST, целью является обучение модели распознавать рукописные цифры, что достигается путем обучения на большом количестве примеров и корректировки весов нейронов для минимизации ошибки.

Код

```python

import tensorflow as tf

from tensorflow.keras import layers, models

import numpy as np

import matplotlib.pyplot as plt

# Загрузка и предобработка данных

(train_images, train_labels), (test_images, test_labels) = tf.keras.datasets.mnist.load_data

train_images = train_images / 255.0

test_images = test_images / 255.0

train_images = train_images.reshape((60000, 28 * 28))

test_images = test_images.reshape((10000, 28 * 28))

#

Создание модели

model = models.Sequential

model.add(layers.Dense(512, activation='relu', input_shape=(28 * 28,)))

model.add(layers.Dense(10, activation='softmax'))

# Компиляция модели

model.compile(optimizer='adam',

loss='sparse_categorical_crossentropy',

metrics=['accuracy'])

# Обучение модели

model.fit(train_images, train_labels, epochs=5, batch_size=128)

# Оценка модели

test_loss, test_acc = model.evaluate(test_images, test_labels)

print(f"Точность на тестовых данных: {test_acc}")

# Использование модели для предсказаний

predictions = model.predict(test_images)

print(np.argmax(predictions[0]))

```

Дополнительные шаги для улучшения модели и анализа результатов

Визуализация результатов

Для лучшего понимания работы модели вы можете визуализировать предсказания модели для нескольких изображений из тестового набора данных. Это поможет понять, как хорошо модель распознает рукописные цифры.

```python

import matplotlib.pyplot as plt

# Визуализация нескольких изображений из тестового набора и предсказаний модели

def plot_image_predictions(images, labels, predictions, num_images=10):

plt.figure(figsize=(10, 10))

for i in range(num_images):

plt.subplot(5, 2, i + 1)

plt.xticks([])

plt.yticks([])

plt.grid(False)

plt.imshow(images[i].reshape(28, 28), cmap=plt.cm.binary)

plt.xlabel(f"True: {labels[i]}, Pred: {np.argmax(predictions[i])}")

plt.show

plot_image_predictions(test_images, test_labels, predictions)

```

Изучение влияния различных параметров

Вы можете экспериментировать с различными параметрами модели, такими как количество нейронов в скрытых слоях, активационные функции и оптимизаторы, чтобы определить их влияние на производительность модели.

1. Изменение количества нейронов:

```python

# Скрытый слой с 256 нейронами

model = models.Sequential

model.add(layers.Dense(256, activation='relu', input_shape=(28 * 28,)))

model.add(layers.Dense(10, activation='softmax'))

model.compile(optimizer='adam',

loss='sparse_categorical_crossentropy',

metrics=['accuracy'])

model.fit(train_images, train_labels, epochs=5, batch_size=128)

test_loss, test_acc = model.evaluate(test_images, test_labels)

print(f"Точность на тестовых данных с 256 нейронами: {test_acc}")

```

2. Использование другой функции активации:

Комментарии:
Популярные книги

"Искажающие реальность" Компиляция. Книги 1-14

Атаманов Михаил Александрович
Искажающие реальность
Фантастика:
боевая фантастика
космическая фантастика
киберпанк
рпг
5.00
рейтинг книги
Искажающие реальность Компиляция. Книги 1-14

Империя ускоряется

Тамбовский Сергей
4. Империя у края
Фантастика:
альтернативная история
6.20
рейтинг книги
Империя ускоряется

Уникум

Поселягин Владимир Геннадьевич
1. Уникум
Фантастика:
альтернативная история
4.60
рейтинг книги
Уникум

Кодекс Охотника. Книга ХХХ

Винокуров Юрий
30. Кодекс Охотника
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Кодекс Охотника. Книга ХХХ

#Бояръ-Аниме. Газлайтер. Том 11

Володин Григорий Григорьевич
11. История Телепата
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
#Бояръ-Аниме. Газлайтер. Том 11

Сирота

Шмаков Алексей Семенович
1. Светлая Тьма
Фантастика:
юмористическое фэнтези
городское фэнтези
аниме
5.00
рейтинг книги
Сирота

Осознание. Пятый пояс

Игнатов Михаил Павлович
14. Путь
Фантастика:
героическая фантастика
5.00
рейтинг книги
Осознание. Пятый пояс

Пустоши

Сай Ярослав
1. Медорфенов
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Пустоши

Месть Пламенных

Дмитриева Ольга
6. Пламенная
Фантастика:
фэнтези
6.00
рейтинг книги
Месть Пламенных

Газлайтер. Том 3

Володин Григорий
3. История Телепата
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Газлайтер. Том 3

Город Богов

Парсиев Дмитрий
1. Профсоюз водителей грузовых драконов
Фантастика:
юмористическая фантастика
детективная фантастика
попаданцы
5.00
рейтинг книги
Город Богов

Мимик нового Мира 3

Северный Лис
2. Мимик!
Фантастика:
юмористическая фантастика
постапокалипсис
рпг
5.00
рейтинг книги
Мимик нового Мира 3

Аномальный наследник. Пенталогия

Тарс Элиан
Аномальный наследник
Фантастика:
фэнтези
6.70
рейтинг книги
Аномальный наследник. Пенталогия

СД. Том 14

Клеванский Кирилл Сергеевич
Сердце дракона
Фантастика:
фэнтези
героическая фантастика
7.44
рейтинг книги
СД. Том 14