120 практических задач
Шрифт:
– Выходной слой:
– 1 нейрон: Выходной слой с одним нейроном, который будет выдавать прогнозируемую цену акции.
Эта архитектура сети, состоящая из двух слоев LSTM и двух полносвязных слоев, позволяет модели эффективно обрабатывать временные ряды и делать прогнозы на основе предыдущих данных. Первый слой LSTM возвращает полную последовательность, позволяя следующему слою LSTM дополнительно обучаться на временных зависимостях. Второй слой LSTM возвращает конечный выход, который затем передается
6. Создание LSTM сети для обработки текстовых данных
– Задача: Анализ настроений в текстах.
Для анализа настроений в текстах с использованием LSTM сети можно использовать библиотеку TensorFlow и её высокоуровневый интерфейс Keras. В этом примере мы рассмотрим, как создать и обучить модель LSTM для анализа настроений на основе текстовых данных.
Шаги:
1. Импорт библиотек и модулей.
2. Подготовка данных.
3. Построение модели LSTM.
4. Компиляция и обучение модели.
5. Оценка и тестирование модели.
Пример кода:
```python
import numpy as np
import pandas as pd
import tensorflow as tf
from tensorflow.keras import layers, models
from tensorflow.keras.preprocessing.text import Tokenizer
from tensorflow.keras.preprocessing.sequence import pad_sequences
from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt
# Шаг 1: Импорт библиотек
import tensorflow as tf
from tensorflow.keras import layers, models
from tensorflow.keras.preprocessing.text import Tokenizer
from tensorflow.keras.preprocessing.sequence import pad_sequences
from sklearn.model_selection import train_test_split
# Шаг 2: Подготовка данных
# Загрузка данных. Предположим, что у нас есть CSV файл с текстами и метками настроений (0 – негативное, 1 – позитивное).
data = pd.read_csv('sentiment_data.csv')
# Пример структуры данных:
# text sentiment
# 0 This movie was great! 1
# 1 I did not like this movie. 0
# …
# Тексты и метки
texts = data['text'].values
labels = data['sentiment'].values
# Токенизация текстов
tokenizer = Tokenizer(num_words=10000) # Используем только 10,000 наиболее частотных слов
tokenizer.fit_on_texts(texts)
sequences = tokenizer.texts_to_sequences(texts)
# Ограничение длины последовательностей (padding)
maxlen = 100 # Максимальная длина последовательности
X = pad_sequences(sequences, maxlen=maxlen)
# Разделение данных на обучающую и тестовую выборки
X_train, X_test, y_train, y_test = train_test_split(X, labels, test_size=0.2, random_state=42)
# Шаг 3: Построение модели LSTM
model = models.Sequential
model.add(layers.Embedding(input_dim=10000, output_dim=128, input_length=maxlen))
model.add(layers.LSTM(128, return_sequences=True))
model.add(layers.LSTM(128, return_sequences=False))
model.add(layers.Dense(1, activation='sigmoid'))
# Шаг 4: Компиляция и обучение модели
model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])
history = model.fit(X_train, y_train, epochs=10, batch_size=32,
validation_data=(X_test, y_test))
# Шаг 5: Оценка модели
loss, accuracy = model.evaluate(X_test, y_test, verbose=2)
print(f'\nТочность на тестовых данных: {accuracy}')
# Визуализация процесса обучения
plt.plot(history.history['accuracy'], label='Точность на обучающем наборе')
plt.plot(history.history['val_accuracy'], label='Точность на валидационном наборе')
plt.xlabel('Эпоха')
plt.ylabel('Точность')
plt.legend(loc='lower right')
plt.show
```
Пояснение:
1. Импорт библиотек: Импортируются необходимые библиотеки TensorFlow, Keras, pandas, matplotlib и другие.
2. Подготовка данных: Загрузка данных из CSV файла, содержащего тексты и метки настроений. Тексты токенизируются с использованием `Tokenizer`, и последовательности приводятся к одинаковой длине с помощью `pad_sequences`.
3. Построение модели LSTM: Модель строится с использованием слоя `Embedding` для преобразования токенов в плотные векторы, двух слоев LSTM для обработки последовательностей и одного полносвязного слоя для выдачи прогноза.
– Слой Embedding:
```python
model.add(layers.Embedding(input_dim=10000, output_dim=128, input_length=maxlen))
```
Этот слой преобразует входные токены в плотные векторы размерности 128.
– Первый слой LSTM:
```python
model.add(layers.LSTM(128, return_sequences=True))
```
Первый слой LSTM возвращает полную последовательность выходов, которая передается следующему слою LSTM.
– Второй слой LSTM:
```python
model.add(layers.LSTM(128, return_sequences=False))
```
Второй слой LSTM возвращает только последний выходной элемент.
– Выходной слой:
```python
model.add(layers.Dense(1, activation='sigmoid'))
```
Выходной слой с сигмоидной активацией для бинарной классификации настроений (позитивное или негативное).