120 практических задач
Шрифт:
model.add(layers.BatchNormalization)
model.add(layers.LeakyReLU)
assert model.output_shape == (None, 32, 32, 64)
model.add(layers.Conv2DTranspose(3, (5, 5), strides=(2, 2), padding='same', use_bias=False, activation='tanh'))
assert model.output_shape == (None, 64, 64, 3)
return model
# Шаг 4: Построение дискриминатора
def build_discriminator:
model = models.Sequential
model.add(layers.Conv2D(64, (5, 5), strides=(2, 2), padding='same', input_shape=[64, 64, 3]))
model.add(layers.LeakyReLU)
model.add(layers.Dropout(0.3))
model.add(layers.Conv2D(128, (5, 5), strides=(2, 2), padding='same'))
model.add(layers.LeakyReLU)
model.add(layers.Dropout(0.3))
model.add(layers.Conv2D(256, (5, 5), strides=(2, 2), padding='same'))
model.add(layers.LeakyReLU)
model.add(layers.Dropout(0.3))
model.add(layers.Flatten)
model.add(layers.Dense(1, activation='sigmoid'))
return model
#
generator = build_generator
discriminator = build_discriminator
# Определение функции потерь и оптимизаторов
cross_entropy = tf.keras.losses.BinaryCrossentropy(from_logits=True)
def discriminator_loss(real_output, fake_output):
real_loss = cross_entropy(tf.ones_like(real_output), real_output)
fake_loss = cross_entropy(tf.zeros_like(fake_output), fake_output)
total_loss = real_loss + fake_loss
return total_loss
def generator_loss(fake_output):
return cross_entropy(tf.ones_like(fake_output), fake_output)
generator_optimizer = tf.keras.optimizers.Adam(1e-4)
discriminator_optimizer = tf.keras.optimizers.Adam(1e-4)
# Шаг 5: Построение и компиляция GAN
@tf.function
def train_step(images):
noise = tf.random.normal([BATCH_SIZE, 100])
with tf.GradientTape as gen_tape, tf.GradientTape as disc_tape:
generated_images = generator(noise, training=True)
real_output = discriminator(images, training=True)
fake_output = discriminator(generated_images, training=True)
gen_loss = generator_loss(fake_output)
disc_loss = discriminator_loss(real_output, fake_output)
gradients_of_generator = gen_tape.gradient(gen_loss, generator.trainable_variables)
gradients_of_discriminator = disc_tape.gradient(disc_loss, discriminator.trainable_variables)
generator_optimizer.apply_gradients(zip(gradients_of_generator, generator.trainable_variables))
discriminator_optimizer.apply_gradients(zip(gradients_of_discriminator, discriminator.trainable_variables))
def train(dataset, epochs):
for epoch in range(epochs):
for image_batch in dataset:
train_step(image_batch)
print(f'Эпоха {epoch + 1} завершена')
# Генерация изображений в конце каждой эпохи
if (epoch + 1) % 10 == 0:
noise = tf.random.normal([16, 100])
generate_and_save_images(generator, epoch + 1, noise)
#
EPOCHS = 100
train(train_dataset, EPOCHS)
# Шаг 7: Генерация изображений
def generate_and_save_images(model, epoch, test_input):
predictions = model(test_input, training=False)
fig = plt.figure(figsize=(4, 4))
for i in range(predictions.shape[0]):
plt.subplot(4, 4, i+1)
plt.imshow((predictions[i] * 127.5 + 127.5).numpy.astype(np.uint8))
plt.axis('off')
plt.savefig(f'image_at_epoch_{epoch:04d}.png')
plt.show
# Генерация изображений после обучения
noise = tf.random.normal([16, 100])
generate_and_save_images(generator, EPOCHS, noise)
```
Пояснение:
1. Импорт библиотек: Импортируются необходимые библиотеки TensorFlow, Keras, numpy и matplotlib.
2. Подготовка данных: Загружаются и подготавливаются данные CelebA. Изображения нормализуются в диапазоне [-1, 1].
3. Построение генератора:
– Генератор создает изображения из случайного шума. Он включает плотные слои, batch normalization и Conv2DTranspose слои для генерации изображений размером 64x64 пикселей.
4. Построение дискриминатора:
– Дискриминатор оценивает, являются ли изображения реальными или сгенерированными. Он состоит из свёрточных слоев, слоев LeakyReLU и dropout для классификации изображений.
5. Построение и компиляция GAN:
– Генератор и дискриминатор объединяются в модель GAN. Определяются функции потерь и оптимизаторы для обеих моделей. Процедура `train_step` выполняет одну итерацию обучения GAN.
6. Обучение GAN:
– GAN обучается в течение заданного числа эпох. На каждом шаге обучения генератор пытается создать реалистичные изображения, а дискриминатор учится отличать реальные изображения от сгенерированных.
7. Генерация изображений:
– После обучения GAN, создаются и сохраняются изображения, сгенерированные генератором.
Этот пример демонстрирует, как создать сложную GAN для генерации реалистичных изображений лиц. Модель может быть улучшена за счет добавления дополнительных
9. Развертывание модели в продакшн
– Задача: Создание REST API для модели.
Развертывание модели машинного обучения в продакшн включает создание REST API, который позволяет клиентам взаимодействовать с моделью через HTTP запросы. В этом примере мы будем использовать Flask, популярный веб-фреймворк на Python, для создания REST API, который может обрабатывать запросы на предсказание с использованием обученной модели.