Чтение онлайн

на главную

Жанры

120 практических задач
Шрифт:

def train(dataset, epochs):

for epoch in range(epochs):

for image_batch in dataset:

train_step(image_batch)

print(f'Эпоха {epoch + 1} завершена')

# Шаг 6: Обучение GAN

EPOCHS = 50

train(train_dataset, EPOCHS)

# Шаг 7: Генерация изображений

def generate_and_save_images(model, epoch, test_input):

predictions = model(test_input, training=False)

fig = plt.figure(figsize=(4, 4))

for i in range(predictions.shape[0]):

plt.subplot(4, 4, i+1)

plt.imshow(predictions[i, :, :, 0] * 127.5 + 127.5, cmap='gray')

plt.axis('off')

plt.savefig(f'image_at_epoch_{epoch:04d}.png')

plt.show

#

Генерация изображений после обучения

noise = tf.random.normal([16, 100])

generate_and_save_images(generator, EPOCHS, noise)

```

Пояснение:

1. Импорт библиотек: Импортируются необходимые библиотеки TensorFlow, Keras, numpy и matplotlib.

2. Подготовка данных: Загружаются данные MNIST и нормализуются в диапазоне [-1, 1]. Данные затем разделяются на батчи для обучения.

3. Построение генератора:

– Генератор создает изображения из случайного шума. Он включает плотные слои, batch normalization и Conv2DTranspose слои для генерации изображений размером 28x28 пикселей.

4. Построение дискриминатора:

– Дискриминатор оценивает, являются ли изображения реальными или сгенерированными. Он состоит из свёрточных слоев, слоев LeakyReLU и dropout для классификации изображений.

5. Построение GAN:

– Генератор и дискриминатор объединяются в модель GAN. Определяются функции потерь и оптимизаторы для обеих моделей.

6. Обучение GAN:

– GAN обучается в течение заданного числа эпох. На каждом шаге обучения генератор пытается создать реалистичные изображения, а дискриминатор учится отличать реальные изображения от сгенерированных.

7. Генерация изображений:

– После обучения GAN, создаются и сохраняются изображения, сгенерированные генератором.

Этот пример демонстрирует, как создать простую GAN для генерации рукописных цифр из набора данных MNIST. Модель может быть улучшена за счет добавления дополнительных слоев, настройки гиперпараметров и использования более сложных архитектур.

8. Построение сложной GAN для генерации реалистичных изображений

– Задача: Генерация изображений лиц.

Для создания сложной генеративно-состязательной сети (GAN) для генерации реалистичных изображений лиц можно использовать библиотеку TensorFlow и Keras. Мы будем использовать улучшенную архитектуру GAN, известную как DCGAN (Deep Convolutional GAN), которая доказала свою эффективность в создании реалистичных изображений. Набор данных CelebA, содержащий фотографии лиц знаменитостей, является хорошим выбором

для этой задачи.

Шаги:

1. Импорт библиотек и модулей.

2. Подготовка данных.

3. Построение генератора.

4. Построение дискриминатора.

5. Построение и компиляция GAN.

6. Обучение GAN.

7. Генерация изображений.

Пример кода:

```python

import tensorflow as tf

from tensorflow.keras import layers, models

import numpy as np

import os

import matplotlib.pyplot as plt

from tensorflow.keras.preprocessing.image import ImageDataGenerator

# Шаг 1: Импорт библиотек

import tensorflow as tf

from tensorflow.keras import layers, models

import numpy as np

import matplotlib.pyplot as plt

import os

# Шаг 2: Подготовка данных

# Загрузка набора данных CelebA

# Этот пример предполагает, что данные находятся в папке 'img_align_celeba/img_align_celeba'

# Скачивание и подготовка данных не входит в код

DATA_DIR = 'img_align_celeba/img_align_celeba'

IMG_HEIGHT = 64

IMG_WIDTH = 64

BATCH_SIZE = 128

BUFFER_SIZE = 60000

def load_image(image_path):

image = tf.io.read_file(image_path)

image = tf.image.decode_jpeg(image, channels=3)

image = tf.image.resize(image, [IMG_HEIGHT, IMG_WIDTH])

image = (image – 127.5) / 127.5 # Нормализация изображений в диапазоне [-1, 1]

return image

def load_dataset(data_dir):

image_paths = [os.path.join(data_dir, img) for img in os.listdir(data_dir)]

image_dataset = tf.data.Dataset.from_tensor_slices(image_paths)

image_dataset = image_dataset.map(load_image, num_parallel_calls=tf.data.experimental.AUTOTUNE)

image_dataset = image_dataset.shuffle(BUFFER_SIZE).batch(BATCH_SIZE).prefetch(tf.data.experimental.AUTOTUNE)

return image_dataset

train_dataset = load_dataset(DATA_DIR)

# Шаг 3: Построение генератора

def build_generator:

model = models.Sequential

model.add(layers.Dense(8 * 8 * 256, use_bias=False, input_shape=(100,)))

model.add(layers.BatchNormalization)

model.add(layers.LeakyReLU)

model.add(layers.Reshape((8, 8, 256)))

assert model.output_shape == (None, 8, 8, 256) # Убедитесь, что выходная форма такая

model.add(layers.Conv2DTranspose(128, (5, 5), strides=(2, 2), padding='same', use_bias=False))

model.add(layers.BatchNormalization)

model.add(layers.LeakyReLU)

assert model.output_shape == (None, 16, 16, 128)

model.add(layers.Conv2DTranspose(64, (5, 5), strides=(2, 2), padding='same', use_bias=False))

Поделиться:
Популярные книги

Кровь на эполетах

Дроздов Анатолий Федорович
3. Штуцер и тесак
Фантастика:
альтернативная история
7.60
рейтинг книги
Кровь на эполетах

Студиозус 2

Шмаков Алексей Семенович
4. Светлая Тьма
Фантастика:
юмористическое фэнтези
городское фэнтези
аниме
5.00
рейтинг книги
Студиозус 2

Темный Патриарх Светлого Рода

Лисицин Евгений
1. Темный Патриарх Светлого Рода
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Темный Патриарх Светлого Рода

Изгой Проклятого Клана. Том 2

Пламенев Владимир
2. Изгой
Фантастика:
попаданцы
аниме
фэнтези
фантастика: прочее
5.00
рейтинг книги
Изгой Проклятого Клана. Том 2

Приручитель женщин-монстров. Том 6

Дорничев Дмитрий
6. Покемоны? Какие покемоны?
Фантастика:
юмористическое фэнтези
аниме
5.00
рейтинг книги
Приручитель женщин-монстров. Том 6

Бестужев. Служба Государевой Безопасности

Измайлов Сергей
1. Граф Бестужев
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Бестужев. Служба Государевой Безопасности

На границе империй. Том 10. Часть 2

INDIGO
Вселенная EVE Online
Фантастика:
космическая фантастика
5.00
рейтинг книги
На границе империй. Том 10. Часть 2

70 Рублей

Кожевников Павел
1. 70 Рублей
Фантастика:
фэнтези
боевая фантастика
попаданцы
постапокалипсис
6.00
рейтинг книги
70 Рублей

Ученик. Книга третья

Первухин Андрей Евгеньевич
3. Ученик
Фантастика:
фэнтези
7.64
рейтинг книги
Ученик. Книга третья

Гардемарин Ее Величества. Инкарнация

Уленгов Юрий
1. Гардемарин ее величества
Фантастика:
городское фэнтези
попаданцы
альтернативная история
аниме
фантастика: прочее
5.00
рейтинг книги
Гардемарин Ее Величества. Инкарнация

Метатель

Тарасов Ник
1. Метатель
Фантастика:
боевая фантастика
попаданцы
рпг
фэнтези
фантастика: прочее
постапокалипсис
5.00
рейтинг книги
Метатель

Один на миллион. Трилогия

Земляной Андрей Борисович
Один на миллион
Фантастика:
боевая фантастика
8.95
рейтинг книги
Один на миллион. Трилогия

Завод: назад в СССР

Гуров Валерий Александрович
1. Завод
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Завод: назад в СССР

Треск штанов

Ланцов Михаил Алексеевич
6. Сын Петра
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Треск штанов