Чтение онлайн

на главную

Жанры

120 практических задач
Шрифт:

4. Компиляция и обучение модели: Модель компилируется с использованием оптимизатора Adam и функции потерь binary_crossentropy. Затем модель обучается на обучающей выборке.

5. Оценка и тестирование модели: Оценивается точность модели на тестовой выборке и визуализируется процесс обучения с помощью графика.

Этот пример демонстрирует, как создать и обучить модель LSTM для анализа настроений в текстах. Модель включает слои embedding для преобразования текстовых данных в числовые

векторы, два слоя LSTM для извлечения временных зависимостей и полносвязный слой для классификации. Эта архитектура позволяет эффективно анализировать тексты и предсказывать настроения на основе данных.

7. Создание простой GAN для генерации изображений

– Задача: Генерация рукописных цифр (набор MNIST).

Для создания простой генеративно-состязательной сети (GAN) для генерации рукописных цифр из набора данных MNIST можно использовать TensorFlow и Keras. В этом примере мы рассмотрим, как создать и обучить GAN для генерации изображений цифр.

Шаги:

1. Импорт библиотек и модулей.

2. Подготовка данных.

3. Построение генератора.

4. Построение дискриминатора.

5. Построение GAN.

6. Обучение GAN.

7. Генерация изображений.

Пример кода:

```python

import tensorflow as tf

from tensorflow.keras import layers, models

import numpy as np

import matplotlib.pyplot as plt

# Шаг 1: Импорт библиотек

import tensorflow as tf

from tensorflow.keras import layers, models

import numpy as np

import matplotlib.pyplot as plt

# Шаг 2: Подготовка данных

# Загрузка набора данных MNIST

(train_images, _), (_, _) = tf.keras.datasets.mnist.load_data

train_images = train_images.reshape(train_images.shape[0], 28, 28, 1).astype('float32')

train_images = (train_images – 127.5) / 127.5 # Нормализация изображений в диапазоне [-1, 1]

BUFFER_SIZE = 60000

BATCH_SIZE = 256

# Создание выборок

train_dataset = tf.data.Dataset.from_tensor_slices(train_images).shuffle(BUFFER_SIZE).batch(BATCH_SIZE)

# Шаг 3: Построение генератора

def build_generator:

model = models.Sequential

model.add(layers.Dense(7 * 7 * 256, use_bias=False, input_shape=(100,)))

model.add(layers.BatchNormalization)

model.add(layers.LeakyReLU)

model.add(layers.Reshape((7, 7, 256)))

assert model.output_shape == (None, 7, 7, 256) # Убедитесь, что выходная форма такая

model.add(layers.Conv2DTranspose(128, (5, 5), strides=(1, 1), padding='same', use_bias=False))

model.add(layers.BatchNormalization)

model.add(layers.LeakyReLU)

model.add(layers.Conv2DTranspose(64, (5, 5), strides=(2, 2), padding='same', use_bias=False))

model.add(layers.BatchNormalization)

model.add(layers.LeakyReLU)

model.add(layers.Conv2DTranspose(1, (5, 5), strides=(2, 2), padding='same', use_bias=False, activation='tanh'))

assert model.output_shape == (None, 28, 28, 1)

return model

#

Шаг 4: Построение дискриминатора

def build_discriminator:

model = models.Sequential

model.add(layers.Conv2D(64, (5, 5), strides=(2, 2), padding='same', input_shape=[28, 28, 1]))

model.add(layers.LeakyReLU)

model.add(layers.Dropout(0.3))

model.add(layers.Conv2D(128, (5, 5), strides=(2, 2), padding='same'))

model.add(layers.LeakyReLU)

model.add(layers.Dropout(0.3))

model.add(layers.Flatten)

model.add(layers.Dense(1, activation='sigmoid'))

return model

# Построение генератора и дискриминатора

generator = build_generator

discriminator = build_discriminator

# Определение функции потерь и оптимизаторов

cross_entropy = tf.keras.losses.BinaryCrossentropy(from_logits=True)

def discriminator_loss(real_output, fake_output):

real_loss = cross_entropy(tf.ones_like(real_output), real_output)

fake_loss = cross_entropy(tf.zeros_like(fake_output), fake_output)

total_loss = real_loss + fake_loss

return total_loss

def generator_loss(fake_output):

return cross_entropy(tf.ones_like(fake_output), fake_output)

generator_optimizer = tf.keras.optimizers.Adam(1e-4)

discriminator_optimizer = tf.keras.optimizers.Adam(1e-4)

# Шаг 5: Построение GAN

@tf.function

def train_step(images):

noise = tf.random.normal([BATCH_SIZE, 100])

with tf.GradientTape as gen_tape, tf.GradientTape as disc_tape:

generated_images = generator(noise, training=True)

real_output = discriminator(images, training=True)

fake_output = discriminator(generated_images, training=True)

gen_loss = generator_loss(fake_output)

disc_loss = discriminator_loss(real_output, fake_output)

gradients_of_generator = gen_tape.gradient(gen_loss, generator.trainable_variables)

gradients_of_discriminator = disc_tape.gradient(disc_loss, discriminator.trainable_variables)

generator_optimizer.apply_gradients(zip(gradients_of_generator, generator.trainable_variables))

discriminator_optimizer.apply_gradients(zip(gradients_of_discriminator, discriminator.trainable_variables))

Поделиться:
Популярные книги

Кровь на эполетах

Дроздов Анатолий Федорович
3. Штуцер и тесак
Фантастика:
альтернативная история
7.60
рейтинг книги
Кровь на эполетах

Студиозус 2

Шмаков Алексей Семенович
4. Светлая Тьма
Фантастика:
юмористическое фэнтези
городское фэнтези
аниме
5.00
рейтинг книги
Студиозус 2

Темный Патриарх Светлого Рода

Лисицин Евгений
1. Темный Патриарх Светлого Рода
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Темный Патриарх Светлого Рода

Изгой Проклятого Клана. Том 2

Пламенев Владимир
2. Изгой
Фантастика:
попаданцы
аниме
фэнтези
фантастика: прочее
5.00
рейтинг книги
Изгой Проклятого Клана. Том 2

Приручитель женщин-монстров. Том 6

Дорничев Дмитрий
6. Покемоны? Какие покемоны?
Фантастика:
юмористическое фэнтези
аниме
5.00
рейтинг книги
Приручитель женщин-монстров. Том 6

Бестужев. Служба Государевой Безопасности

Измайлов Сергей
1. Граф Бестужев
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Бестужев. Служба Государевой Безопасности

На границе империй. Том 10. Часть 2

INDIGO
Вселенная EVE Online
Фантастика:
космическая фантастика
5.00
рейтинг книги
На границе империй. Том 10. Часть 2

70 Рублей

Кожевников Павел
1. 70 Рублей
Фантастика:
фэнтези
боевая фантастика
попаданцы
постапокалипсис
6.00
рейтинг книги
70 Рублей

Ученик. Книга третья

Первухин Андрей Евгеньевич
3. Ученик
Фантастика:
фэнтези
7.64
рейтинг книги
Ученик. Книга третья

Гардемарин Ее Величества. Инкарнация

Уленгов Юрий
1. Гардемарин ее величества
Фантастика:
городское фэнтези
попаданцы
альтернативная история
аниме
фантастика: прочее
5.00
рейтинг книги
Гардемарин Ее Величества. Инкарнация

Метатель

Тарасов Ник
1. Метатель
Фантастика:
боевая фантастика
попаданцы
рпг
фэнтези
фантастика: прочее
постапокалипсис
5.00
рейтинг книги
Метатель

Один на миллион. Трилогия

Земляной Андрей Борисович
Один на миллион
Фантастика:
боевая фантастика
8.95
рейтинг книги
Один на миллион. Трилогия

Завод: назад в СССР

Гуров Валерий Александрович
1. Завод
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Завод: назад в СССР

Треск штанов

Ланцов Михаил Алексеевич
6. Сын Петра
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Треск штанов