Алекс в стране чисел. Необычайное путешествие в волшебный мир математики
Шрифт:
Игра в пятнашки способна стать сущим мучением — это знает всякий, кто пробовал в нее играть. Дело в том, что иногда задача решается, а иногда — нет. Оказалось, при случайной расстановке фишек есть только два исхода: или все фишки удается расположить в правильном порядке, или же получаются только первые три ряда, а в последнем числа располагаются как 13-15-14. Массовое безумие игроков подогревалось отчасти желанием понять, возможно ли из расположения 13-15-14 получить расположение 13-14-15. В январе 1890 года — через несколько недель после появления в продаже первой головоломки — некий дантист из Рочестера, штат Нью-Йорк, поместил в местной газете объявление, в котором обещал награду в 100 долларов и комплект вставных зубов всякому, кто ответит на этот вопрос. Сам он, считая, что это невозможно, не сумел справиться с соответствующей математикой.
Из гостиных задачка пришла в залы научных учреждений, и, коль скоро в дело вступили профессионалы, вскоре она была решена. В апреле 1890 года Герман Шуберт, один из выдающихся математиков того времени, опубликовал в немецкой газете самое
Как и танграмы, игра в пятнашки и сегодня не забыта. До сих пор ее можно найти в магазинах игрушек, пятнашки кладут в рождественские хлопушки и корпоративные подарочные наборы. В 1974 году один венгр задумал усовершенствовать эту головоломку — ему пришла в голову мысль перенести ее в три измерения. Этот человек — Эрнё Рубик — сделал опытный образец, кубик Рубика, не подозревая, что впоследствии он станет одной из самых успешных головоломок в истории.
В 2002 году специалист по семиотике Марсель Данези писал в своей книге «Головоломный инстинкт», что интуитивная способность к решению головоломок представляет собой одно из необходимых человеку свойств. Когда нам предъявляют какую-либо головоломку, объясняет он, наши инстинкты заставляют нас искать решение до тех пор, пока мы не будем удовлетворены. Начиная с загадок Сфинкса и кончая тайнами современных детективов, головоломки представляют собой важный элемент человеческой культуры. Данези утверждает, что головоломки — некий вид экзистенциальной терапии, демонстрирующий нам, что сложные вопросы могут иметь точные решения. Великий создатель головоломок англичанин Генри Эрнест Дьюдени утверждал, что процесс решения головоломок лежит в основе человеческой природы: «Вся наша жизнь по большей части проходит в решении головоломок, ибо что такое головоломка, как не вопрос, ставящий нас в тупик? С детских лет мы беспрестанно задаем вопросы или пытаемся найти на них ответы».
Головоломки — это, кроме того, чудесный способ сделать математику более привлекательной. Решение их нередко требует нестандартного мышления или опирается на факты, на первый взгляд противоречащие интуиции. Ощущение достигнутого успеха, испытываемое при решении головоломок, — удовольствие, которое хочется переживать вновь и вновь; когда же задачка не решается, от тоски просто лезешь на стенку. Чувство поражения почти непереносимо.
Издатели быстро осознали, что рынок математических забав огромен. В 1612 году во Франции вышла книга Клода Гаспара Баше «Занимательные и приятные задачи (очень полезные для всех любопытных людей, использующих арифметику)». Один из ее разделов был посвящен магическим квадратам, фокусам с картами, вопросам, относящимся к системам счисления с основанием, отличным от десяти, а также задачкам из серии «задумай число». Баше был серьезным исследователем, он перевел Диофантову «Арифметику» с греческого на латынь и снабдил текст своими комментариями. Однако его популярная книга по математике оказалась, пожалуй, гораздо более заметной, чем его научные труды. Она сохраняла свою актуальность в течение столетий, а сравнительно недавно — в 1959 году — выдержала еще одно издание. Мы уже говорили, что определяющая черта математики — пусть даже развлекательной — состоит в том, что она никогда не устаревает.
В середине XIX века американские газеты начали печатать шахматные задачи. Одним из первых, и к тому же самым молодым из изобретателей таких задач был ньюйоркец Сэм Лойд. В возрасте всего 14 лет опубликовал свою первую задачку в местной газете. В 17 лет он был уже одним из наиболее успешных и известных изобретателей шахматных задач в Соединенных Штатах. От шахмат Лойд перешел к математическим головоломкам и к концу столетия стал первым в мире профессиональным составителем головоломок и импресарио. Он часто публиковался в американских изданиях и утверждал, что получал от читателей до 100 000 писем в день. Эту цифру, впрочем, следует воспринимать с известной долей скептицизма. Лойд призывал людей относиться к истине как к некой забавной игре — что можно ждать от профессионального загадочника! Для начала Ллойд заявил, что именно он изобрел игру в пятнашки, и ему поверили! И только в 2006 году, когда историки Джерри Слонам и Дик Соннвелд проследили происхождение этой игры, выяснилось, что на самом деле ее придумал Ной Чепмэн. Лойд также возродил интерес к танграмам, опубликовав «Восьмую книгу о тан, Часть I», якобы являвшуюся вариантом древнего текста, посвященного 4000-летней истории этой головоломки. Книга оказалась мистификацией, хотя сначала ее всерьез восприняли даже ученые.
Лойд обладал феноменальной способностью к превращению математических задач в забавные, ярко иллюстрированные головоломки. Самой гениальной из них была головоломка, изобретенная Лойдом в 1896 году для газеты «Brooklyn Daily Eagle». Эта головоломка, называвшаяся «Таинственное исчезновение с Земли», приобрела такую популярность, что позднее ее идеей воспользовались в качестве рекламных приемов несколько известных брендов, таких как «The Young Ladies Ноше Journal» и «Большая Атлантическая & Тихоокеанская чайная компания»; кроме того, ее использовали республиканцы для своей политической программы на президентских выборах 1896 года (хотя содержащееся в ней послание вовсе не походило на политический манифест). На этой головоломке изображены китайские воины, расположенные вокруг Земли, нарисованной на картонном круге, который может вращаться вокруг своего центра [43] . Когда нарисованная на круге стрелка указывает на северо-восток, на картинке нарисовано 13 воинов, но стоит повернуть круг так, чтобы стрелка указывала на северо-запад, как один из них исчезает, и воинов остается только 12. Эта головоломка сбивает с толка. Только что перед вами было 13 воинов, а через секунду — уже только 12. Кто именно исчез и куда он делся?
43
Круг прикреплен в центре к картонному квадрату, относительно которого и рассматриваются вращения. ( Примеч. перев.)
Фокус, используемый в данной головоломке, известен как геометрическое исчезновение. Его можно продемонстрировать и так: на рисунке изображен лист бумаги с нанесенными на него десятью вертикальными отрезками. При разрезании листа по диагонали получаются два куска, которые можно сложить по-другому — так, что получится только девять отрезков. Куда делся десятый? А происходит следующее: отрезки сложились таким образом, что их получилось девять, но они оказались длиннеепервоначальных. Если отрезки на первом рисунке имели длину 10 единиц, то на втором их длина равна 11 1/ 9, поскольку один из исходных отрезков распределился среди девяти остальных.
В своей головоломке «Таинственное исчезновение с Земли» Сэм Лойд использовал геометрическое исчезновение на окружности, а вместо отрезков — китайских воинов. В его головоломке имеется 13 позиций воинов, аналогично наличию 10 отрезков в разобранном выше примере. В левом нижнем углу исходно имеются два воина, что соответствует исходному положению крайних отрезков в фокусе с геометрическим исчезновением. Когда стрелка переводится с северо-востока на северо-запад, части воинов соединяются по-другому — ко всем, кроме двух, немножко «добавляется», а два крайних при этом радикально «ужимаются» — создается впечатление, что целый воин исчез. На самом деле он просто перераспределился среди остальных. Сэм Лойд заявлял, что произведено десять миллионов экземпляров «Таинственного исчезновения с Земли». Он стал богатым и знаменитым и наслаждался репутацией американского короля головоломок.
«Таинственное исчезновение с Земли»
Тем временем в Великобритании Генри Эрнест Дьюдени также приобретал аналогичную репутацию. Если капиталистическая нагловатость Лойда и его талант к саморекламе отражали оживленную атмосферу соперничества, царившую в Нью-Йорке на рубеже столетий, то Дьюдени был воплощением сдержанного английского стиля. Он происходил из фермерской семьи, занимавшейся разведением овец в Сассексе. Уже в 13-летнем возрасте он начал работать — клерком в одном из государственных учреждений в Лондоне. Однако эта работа ему быстро наскучила, и он принялся публиковать небольшие задачки и головоломки в различных изданиях. В конце концов он полностью посвятил себя журналистике [44] . Его жена Элис писала пользовавшиеся успехом романтические повести о деревенской жизни в Сассексе — где, благодаря ее авторским гонорарам, они с мужем могли жить в их поместье, ни в чем не нуждаясь. Супруги Дьюдени часто бывали и в Лондоне, вращались в высокообразованных литературных кругах, куда также входил сэр Артур Конан Дойл — создатель Шерлока Холмса, самого знаменитого разгадывателя головоломок во всей литературе.
44
В течение 20 лет Г. Э. Дьюдени вел раздел математических развлечений в популярном ежемесячном журнале «Strand Magazine». ( Примеч. перев.)
В 1894 году Лойд опубликовал очередную шахматную задачу, которая решалась в 53 хода. Он был уверен, что никто никогда не найдет известное ему одному решение. Однако Дьюдени, который был на 17 лет младше Лойда, нашел решение в 50 ходов. После этого они некоторое время сотрудничали, но разругались, когда Дьюдени узнал, что Лойд не гнушается плагиатом. Дьюдени презирал Лойда столь глубоко, что сравнивал его с дьяволом.
И Лойд, и Дьюдени были самоучками, но Дьюдени обладал гораздо более ясным математическим складом ума. Многие из его головоломок затрагивают глубокие математические проблемы, причем нередко предвосхищая интерес к ним со стороны ученых. Например, в 1962 году математик Мейко Кван исследовал задачу о дороге, которую должен выбрать почтальон, чтобы пройти по каждой улице и притом кратчайшим путем. Дьюдени же почти на 50 лет ранее сформулировал — и решил — ту же задачу в виде головоломки об инспекторе шахт, которому надо пройти по всем подземным туннелям.