Алекс в стране чисел. Необычайное путешествие в волшебный мир математики
Шрифт:
(А90822)1, 1, 2, 1, 1, 2, 2, 2, 3, 1, 1, 2, 1, 1, 2, 2, 2, 3, 2, 1, 1, 2…
Первая тройка появляется на девятом месте. Четверка первый раз возникает на 221-м месте. Появление пятерки ожидается не раньше, чем ад замерзнет — она возникнет на месте с номером 10 100000000000000000000000.
Это экстремально большое число. Например, вся Вселенная содержит только 10 80элементарных частиц. В конце концов появится и шестерка, но на таком расстоянии от начала, которое разумно можно описать только как степень степени степени степени степени:
Древние греки уделяли простым числам серьезное внимание. Но еще больше они были очарованы числами, которые называли совершенными. Рассмотрим число 6: числа, на которое оно делится, его делители, — это 1, 2 и 3. Если сложить 1, 2 и 3 — voil`a, снова получается 6. Совершенное число — это любое число, которое, подобно шестерке, равно сумме своих делителей. (Строго говоря, у 6 есть еще делитель 6, но при рассмотрении совершенных чисел имеет смысл включать только те делители, которые меньше данного числа.) Следующее за шестеркой совершенное число — это 28, потому что числа, на которые оно делится, — это 1, 2, 4, 7 и 14, а их сумма равна как раз 28. Не только греки, но и евреи и христиане приписывали космологическое значение такому численному совершенству. Живший в XI веке выдающийся богослов и писатель Рабан Мавр писал: «Шесть не потому совершенно, что Бог сотворил мир за 6 дней, но Бог совершил акт творения за 6 дней потому, что число это совершенно».
Греки обнаружили также неожиданную связь между совершенными и простыми числами, которая породила многочисленные связанные с ними приключения. Рассмотрим последовательность удвоений, начинающуюся с 1:
(А 79)1, 2, 4, 8, 16…
В своих «Началах» Евклид показал, что всегда, когда сумма удвоений есть простое число, можно найти совершенное число, умножая сумму на наибольшее из тех удвоений, что в нее входят. Это звучит как малопонятная тирада, так что давайте начнем складывать удвоения, чтобы увидеть, что же все это означает.
1 + 2 = 3. Число 3 простое, так что мы умножим 3 на старшее из наших удвоений, то есть на 2: 3 x 2 = 6, а число 6 совершенно.
1 + 2 + 4 = 7. Число 7 снова простое. Поэтому умножим 7 на 4, что даст еще одно совершенное число, а именно 28.
1 + 2 + 4 + 8 = 15. Это число не простое. Не появится здесь и совершенного числа.
1 + 2 + 4 + 8 + 16 = 31. Это число простое, а 31 x 16 = 496 — совершенное число.
1 + 2 + 4 + 8 +16 + 32 = 63. Это число не простое.
1 + 2 + 4 + 8 + 16 + 32 + 64 = 127. Это число также простое, а 127 x 64 = 8128 — совершенное число.
Доказательство Евклида было, конечно, геометрическим. Он не записывал его в терминах чисел, а использовал отрезки прямых. Однако если бы он мог позволить себе роскошь современных алгебраических обозначений, то заметил бы, что сумму удвоений 1 + 2 + 4 +… можно выразить как сумму степеней двойки, 2 0+ 2 1+ 2 2+… (Заметим, что любое число в степени 0 есть 1 и что любое число в степени 1 есть само это число.) Тогда становится понятным, что любая сумма удвоений равна следующему удвоению за вычетом единицы. Например:
1 + 2 = 3 = 4 - 1, или 2 0+ 2 1= 2 2 – 1
1 + 2 + 4 = 7 = 8–1, или 2 0+ 2 1+ 2 2= 2 3– 1.
Это можно обобщить в виде формулы 2 0+ 2 1+ 2 2+… + 2 n-1= 2 n– 1. Другими словами, сумма первых nудвоений равна 2 n– 1.
Итак, используя исходное заявление Евклида о том, что «когда сумма удвоений есть простое число, можно построить совершенное число, умножая сумму на наибольшее из тех удвоений, что в нее входят» и добавляя к этому современные алгебраические обозначения, мы можем получить намного более четкое утверждение:
Если число 2 n– 1 простое, то число (2 n– 1) x 2 n-1совершенное.
Для цивилизаций, которые превозносили совершенные числа, данное Евклидом доказательство было потрясающей новостью. Если совершенные числа можно породить всякий раз, когда число 2 n– 1 простое, то все, что нужно для нахождения новых совершенных чисел, — это нахождение простых чисел, которые можно записать в виде 2 n– 1. Охота за совершенными числами свелась к охоте за простыми числами определенного типа.
Конечно, математический интерес к простым числам, записываемым в виде 2 n– 1, мог быть связан с совершенными числами, однако к XVII столетию простые числа стали объектом увлечения сами по себе. В то время как одни математики были поглощены вычислением числа со все большим и большим количеством десятичных знаков, другие посвящали себя нахождению все больших и больших простых чисел. Эти два рода деятельности похожи, но противоположны: если вычисление десятичных знаков в числе —это поиск все меньших и меньших объектов, то погоня за простыми числами — это взлет вверх, в небеса. Развитию обоих направлений способствовала скорее романтическая аура самого путешествия, нежели возможности практического использования чисел, открытых по дороге.
В ходе этого поиска простые числа вида 2 n– 1 зажили своей собственной жизнью. Эта формула не давала простых чисел при всех значениях n,но для малых чисел процент успеха был весьма неплох. Как мы уже видели, при n= 2, 3, 57 число 2 n– 1 — простое.
Французский монах (и одновременно один из выдающихся ученых своего времени) Марен Мерсенн (1588–1648) просто зациклился на использовании чисел вида 2 n– 1 для производства простых. В 1644 году он выступил с широкомасштабным заявлением о том, что ему известны все значения nдо 257, при которых число 2 n– 1 простое. По его словам, это были значения
(А109 461)2, 3, 5, 7, 13, 17, 19, 31, 67, 127, 257.
Мерсенн был дельным математиком, однако его список — по большей части плод угадывания. Число 2 257– 1 состоит из 78 цифр — определенно слишком много для проверки человеческими силами на предмет того, простое оно или нет. Мерсенн осознавал, что его числа — это стрельба наугад. Он говорил о своем списке: «Всего времени не хватит, дабы определить, простые ли они».
Но одному математику времени тем не менее все-таки хватило, — такое нередко бывает в науке. В 1876 году, через два с половиной столетия после того, как Мерсенн предложил свой список, французский специалист по теории чисел Эдуар Люка изобрел метод, позволяющий проверить, являются ли числа вида 2 n– 1 простыми, и выяснил, что Мерсенн был не прав по поводу числа 67 и, кроме того, он пропустил числа 61, 89 и 107. Потрясающе, однако, что Мерсенн оказался прав насчет числа 127. Люка применил свой метод для доказательства того, что число 2 127– 1 (то есть 170 141 183 460 4 69 231 731 687 303 715 884 105 727) — простое. Оно оставалось самым большим известным простым числом до наступления века компьютеров. Люка, однако, не смог определить, простое или нет число 2 257– 1 — оно было слишком большим для ручных вычислений.