Александр Александрович Любищев (1890—1972)
Шрифт:
... Ведущей в собственном смысле слова можно назвать прежде всего самостоятельную науку, т. е. такую, которая имеет самостоятельные аксиомы, несводимые к аксиомам других наук, причем аксиомы других, более совершенных наук оказываются лишь частным случаем этих аксиом. Поэтому взаимоотношение физики и биологии можно мыслить трояко: а) Физика навсегда остается ведущей наукой, тогда как биология самостоятельной наукой по существу не является; б) И та и другая науки имеют конгруэнтные области, где действуют те же аксиомы, но за пределами этих областей каждая наука имеет аксиомы совершенно самостоятельные, т. е. не выводимые одна из другой; в) Наконец, третьим возможным случаем будет такой, где аксиомы более простой науки целиком выводятся из аксиом более сложной. Вот если осуществится третья возможность, тогда можно будет сказать, что биология действительно заняла ведущее положение в естествознании.
"Большинство материалистов и механистов в биологии стремятся ограничить роль математики ролью служанки, да и услугами этой служанки пользуются не особенно охотно. Вспомним, что сказал Кант по поводу известного изречения "Философия есть служанка богословия". "Согласен, — сказал Кант, — но ведь служанки бывают разные: одни несут шлейф госпожи, а другие — факел, освещающий ей путь". Последняя роль совсем не унизительна" (из письма О. М. Калинину, 23.3.64 г.).
"Почему Вас так смущает "иррациональность", связанная с номогенезом и другими оппозиционными направлениями в биологии? Ведь прогресс математики был связан с освоением нуля (зачем обозначать то, что не существует), отрицательных чисел, иррациональных, трансцендентных, мнимых, комплексных чисел, кватернионов и др. Прогресс биологии тоже должен быть связан со свободным использованием таких понятий, которые наши философские предрассудки считают "недопустимыми"" (из письма С. В. Мейену, 7.8.68 г.).
Полемизируя с теми, кто остерегался математики, А. А. писал: "Представление о математике, как о каком-то яде, который можно принимать лишь в малых дозах, основано просто на невежестве. Именно "осторожность" в применении настоящей математики ... привела к деградации или косности в биологии, агрономии и других науках и принесла колоссальный материальный и моральный ущерб. Вся осторожность в применении математических методов, как и всяких других методов, заключается в хорошем знакомстве с методами, условиями их применения и постоянном контроле опытом. Никакой особой "опасности" по сравнению с другими методами математические методы в себе не заключают, но в силу своей большей точности имеют то крупное преимущество, что ошибки гораздо легче вскрываются опытом". Ошибки в применении математики в биологии А. А. проанализировал в [61, 62], где, будучи верным диалектике, рассмотрел как "ошибки от недостатка осведомленности", так и "ошибки, связанные с избытком энтузиазма".
Что касается теоретической систематики, то это моя первая и последняя любовь.
Из письма О. М. Калинину.
15.9.61 г.
Мысли А. А. Любищева о систематике, по-видимому, являются стержнем, основой большинства его теоретических построений. Несомненно, они заслуживают специального исследования. Триада "форма — система — эволюция" уже рассмотрена в гл. 1. Опубликованные работы [5, 50, 52, 55, 58, 59, 64, 65, 67, 69, 76, 81, 90] и рукописные материалы дают богатую пищу для размышлений и в других направлениях. Не касаясь здесь практической систематики, ограничимся минимумом высказываний А. А. по теоретической и общей систематике (системологии), имеющих отношение к математике.
"Систематика — альфа и омега каждой науки. Вспомним периодическую систему Д. И. Менделеева, кристаллографическую систематику Е. С. Федорова, классификацию звезд, систематику геометрий и пр. — все эти построения относятся к высшим достижениям точных наук... Систематизация в истинном смысле слова есть нахождение такой системы многообразия, которая допускает возможно полное, краткое и точное математическое описание многообразия с возможностью прогноза" [58].
"Мы выдвигаем задачу построения рациональной системы организмов, т. е. такой, форма и структура которой вытекала бы из некоторых общих принципов, как это делается в системе математических кривых, форм симметрии в кристаллографии, периодической системы в химии, системы органических соединений и т. д... Мы имеем право различать по крайней мере три основные формы системы: иерархическую, комбинативную и коррелятивную (параметрическую). Примером комбинативной системы может быть многообразная комбинация различных независимых генов при наследовании по Менделю, примером коррелятивной — периодическая система элементов".
"Комбинативный подход к классификации любого рода явлений в любой области является тем первичным и основным, с которого надо начинать при попытках систематизации
"Сейчас уже не приходится защищать положение, что развитие всякой прогрессивной науки тесно связано с внедрением математических методов. Сейчас достаточно широко внедряются методы, связанные с теорией вероятности и математической статистикой: дисперсионный, дискриминантный, канонический и факторный анализы. Положено начало внедрению математической логики в систематику, но эти попытки, как правило, не выходят из рамок иерархического понимания системы... Весьма возможно, что для построения филогении пригодятся математические аппараты совершенно иного характера: топология, теория графов и пр., и, вероятно, потребуется развить совершенно новые математические дисциплины. Здесь потребуется тесное содружество математиков и биологов... Пока же биологи, стремящиеся продвинуть математику в систематику, недостаточно квалифицированы математически, квалифицированные же математики не вполне понимают всю сущность систематических и биологических проблем. Было бы очень полезно, если бы квалифицированные математики, заинтересованные в применении математики к систематике, занялись конкретной систематикой какой-либо группы организмов, хотя бы в порядке хобби... Было бы желательно более тесное взаимное проникновение у одного лица его математической и систематической квалификации" [65].
"Что математика совмещает в себе и высокую науку и высокое искусство — это, конечно, бесспорно, но Вы не правы, что это единственная наука, ставящая условием красоту, изящество и т. д. Эстетические эмоции играют огромную роль и, например, в систематике насекомых... Разница только в том, что у математиков их эстетические эмоции находятся в полной гармонии с их рациональными ощущениями, а у биологов принято отрицать объективную красоту, все сводить на полезностей потом) систематики, будучи эстетами от природы, обычно стесняются в этом признаваться" (из письма Д. Д. Мордухай-Болтовскому, 24.8.51 г.).
В 1910 г. у меня возникло предположение, что математическая морфология вполне возможна.
А. А. Любищев.
Воспоминание об А. Г. Гурвиче
Проблема формы в работах А. А. Любищева рассматривается С. В. Мейеном в гл. 1, и мы ограничимся здесь лишь несколькими выдержками, непосредственно связанными с математикой.
"Учение о естественной системе возникло как ответ на необходимость навести порядок в огромном разнообразии окружающих нас органических форм... Широкое понимание симметрии и вообще правильности строения организма естественно приводит к математической трактовке органических форм... Для того чтобы получить представление о многочисленных попытках математической морфологии, следует познакомиться с замечательной книгой Д’Арси Томпсона "0 росте и форме".[2 Thompson D’Arcy W. On growth and form. Cambridge, 1942.] Автор пишет, что книга не нуждается в предисловии, так как сама является предисловием от начала до конца. Да, предисловием к новой великой книге о математической трактовке органических форм. Одни биологи, даже с редкой среди биологов склонностью к математике, без помощи высокообразованных математиков ее написать не смогут... Математика начинает проникать разными путями. Открываются перспективы к тому, чтобы сравнительная анатомия заняла почетное место в ряду точных наук. Возможно и внедрение эксперимента, но это уже не так существенно. Ведь образец точной науки — небесная механика — до самых последних лет обходилась без эксперимента, а морфология животных и растений еще ждет своих Коперника, Галилея, Кеплера и Ньютона.