Альманах "Эврика"-84
Шрифт:
Затем ученым удалось осуществить методику искусственного стимулирования потока атомов из определенной точки плазмы, что дало возможность измерять локальную температуру разогретого до многих миллионов градусов водорода. Ныне корпускулярная диагностика включает целый комплекс экспериментальных методик, который обеспечивает измерение и контроль как температуры, так и всех важнейших параметров ионов в термоядерных установках. Эта диагностика сформировалась в самостоятельное направление в области исследования горячей плазмы.
Для того чтобы на основе анализа потоков частиц получить четкое представление о процессах, протекающих внутри плазмы, выяснить механизмы нагрева ионов
В течение последнего десятилетия комплекс методов корпускулярной диагностики и математического моделирования явлений в плазме был применен на термоядерных установках типа «токамак» в Институте атомной энергии. Результаты использования созданной советскими учеными — разнообразной диагностической аппаратуры совместно с глубоко разработанными математическими моделями баланса энергии и частиц в плазме оказались весьма впечатляющими. Исследователям удалось решить не только проблему надежного определения важнейших параметров, но и обнаружить и изучить закономерности нагрева и удержания водорода в «токамаках». Корпускулярная диагностика будет использоваться как важный способ контроля параметров плазмы на термоядерных установках следующих поколений вплоть до реактора управляемого термоядерного синтеза.
Работы советских ученых открывают также перспективы дальнейшего развития исследований горячей плазмы на «токамаках», которые позволяют вплотную подойти к получению самоподдерживающейся управляемой термоядерной реакции. Такие условия будут созданы, в частности, в «Токама-ке-15», который должен быть введен в строй в текущей пятилетке.
В области корпускулярной диагностики и математического моделирования процессов нагрева плазмы советским ученым принадлежит бесспорный мировой приоритет. По запросам зарубежных термоядерных центров соответствующая аппаратура поставлена в ФРГ, США, Францию, Англию, Японию, Швейцарию, ЧССР, ВНР, то есть практически во все страны, проводящие термоядерные исследования. Советские ученые по приглашению своих коллег неоднократно успешно выполняли эксперименты на зарубежных термоядерных установках с помощью созданной в СССР аппаратуры. Методы математического моделирования нагрева и удержания ионов в плазме термоядерных установок, развитые нашими учеными, послужили основой программы таких работ в ведущих научных центрах за рубежом.
В работе стеклодува есть что-то от колдовства. Вот он концом металлической трубки поддевает немного расплавленной массы, подносит другой конец ко рту — и кажется, будто трубка превратилась в волшебную флейту. Мастер покачивает ее, вращает из стороны в сторону. И багровый сгусток расплава, словно цветок, на глазах принимает очертания изящной вазы с тончайшими стенками.
Вот если бы так можно было выдувать изделия из металла! Но в ответ на такое предположение любой технолог только улыбнется: даже на мощных прессах из металлического листа не всегда удается вытянуть объемную деталь — он просто рвется. До недавнего времени лишь стекло, нагретое до вязкой массы, отличалось редкой пластичностью: слабые легкие человека могут заставить его удлиняться в размерах в 500–600 раз! Близкими свойствами сегодня обладают и некоторые из пластмасс. Но заставить растягиваться, как податливую резину, прочнейший металл?..
Вполне реально. Титановый сплав можно заставить удлиняться даже в две тысячи раз. Для этого надо перевести его в сверхпластичное состояние…
Сверхпластичность. Впервые это понятие вошло в обиход науки с легкой руки академика А. Бочвара. Но само явление, открытое на кончике пера теоретиков, оказалось крепким орешком: до сих пор до конца неясно, почему металл, пройдя определенную термообработку и снова нагретый примерно до половины температуры плавления, вдруг начинает послушно растягиваться при сравнительно небольших усилиях. Правда, этот «пробел в знаниях» не остановил ученых Московского института стали и сплавов, — объединив усилия нескольких кафедр, они научились переводить в сверхпластичное состояние целую гамму металлов.
Есть одно бесспорное условие: металл становится сверхпластичным лишь после того, как приобретает мелкозернистое строение. Если обычно его кристаллы имеют разллеры от десятков до сотен микрон, то в сверхпластичном состоянии — от одного микрона до десяти. Можно подумать, что такие мелкие «зерна» гораздо слабее «привязаны» к своим местам и легко «перетекают» друг относительно друга. Отсюда и преимущества новой технологии…
Для работы со сверхпластичным материалом вовсе не обязательно осваивать «выдувание» сжатым воздухом или газом. Можно воспользоваться и обычным оборудованием — сравнительно маломощными прессами, штампами из доступных сталей. И с их помощью получать изделия сложнейшей формы. Причем получать при минимальных затратах энергии и почти без брака: скажем, там, где металлический лист при штамповке нередко рвался на крутых изгибах, сверхпластичный металл послушно обнимает матрицу.
Конечно, в природе ничто не дается даром. Для одних металлов, чтобы получить мелкозернистую структуру, достаточно термической обработки.
Можно поступить и иначе: распылить расплав в тончайший порошок и уже его превратить в заготовку методами порошковой металлургии. Плюс к этому нужна и соответствующая температура. Например, алюминиево-цин-ковый сплав становится сверхпластичным при двухстах пятидесяти градусах, медные сплавы нагревают примерно до пятисот, а титановые — до девятисот градусов. Но эти затраты окупаются с лихвой…
Скажем, многие детали, которые раньше требовали сложной механической обработки, из сверхпластичного металла можно получать за одну операцию. При этом экономится не только время — нет и уходящей в отходы стружки. А в результате коэффициент использования металла повышается в три-четыре раза.
Фантастическая идея управления формой жидкости отныне нашла реальное воплощение. На Харьковском заводе химических реактивов сегодня начат промышленный выпуск феррожидкости, способной под воздействием магнитного поля изменять не только конфигурацию своей поверхности, но и плотность, вязкость, оптические и электрические свойства.
Новая продукция, способ получения которой разработан учеными Харьковской лаборатории Московского научно-исследовательского энергетического института имени Г. М. Кржижановского, представляет собой особый раствор микроскопических частичек магнетита.
Эта жидкость черного цвета ведет себя, кажется, вопреки всем законам природы: в магнитном поле, не подчиняясь силе тяжести, она течет не вниз, а вверх, без механического воздействия образует фонтанчики и даже на глазах шариками повисает в пространстве.