Альманах "Эврика"-84
Шрифт:
Наша сегодняшняя задача — получение 114-го элемента. Почему именно его? Судя по всему, сразу за 107-м начинается область, которую «населяют» крайне неустойчивые ядра: они распадаются настолько быстро, что, даже получив, мы едва ли сумеем их обнаружить. А с другой стороны, теория предсказывает, что в зоне сверхэлементов с атомными номерами 112–120 ядра должны быть более устойчивыми.
Что же дает нам уверенность в успехе? Исследования, которые мы ведем параллельно. Если сверхэлементы в принципе возможны, то они могли где-то оставить свои «следы». И мы ищем эти «следы» в земных минералах, в образованиях, поднятых с океанского дна, в глубинных водах, насыщенных солями тяжелых металлов. Но, пожалуй, больше всего надежд мы возлагали
Наши надежды оправдались: в метеорите Марьялахти, найденном на побережье Ладожского озера, сотрудники лаборатории обнаружили характерный «след», принадлежащий ядру с атомным номером по меньшей мере больше 110. Правда, мы понимали, что один «след» — не очень веское доказательство. Но недавно удалось обнаружить второй. И есть надежда, что таким же окажется третий. Если все это так, дело остается «за малым»: повторить то, что сумела сделать природа.
Казалось бы, наши исследования носят чисто научный, фундаментальный характер. И весьма далеки от прозы будней. На самом деле это не так. Например, бомбардируя тяжелыми «онами полимерные пленки, мы научились превращать их в своего рода «сито». Размер отверстий у него может быть в одну миллионную долю миллиметра. А плотность этих отверстий доходит до миллиарда на один квадратный сантиметр.
Такие полиядерные материалы оказались незаменимыми в роли фильтров для сверхтонкой очистки. Они с успехом очищают воду и воздух от микроскопических вирусов, задерживают угольную пыль, стерилизуют лекарственные растворы, незаменимы при контроле за состоянием окружающей среды. Эти фильтры уже защищают от загрязнений атмосферу операционных и цехов промышленных предприятий, прошли испытания как «инструмент» для получения противогриппозных и других вакцин.
Но и это лишь один из примеров практического приложения результатов наших исследований. Скажем, чтобы научиться «распознавать» ядра сверхтяжелых атомов, пришлось создать исключительно чувствительную аппаратуру. Как говорят специалисты, ее отличает рекордное отношение «сигналфон» — качество, необходимое, например, при поиске редких полезных ископаемых. В этом и состоит «почерк» Дубны, где большая наука всегда старалась служить практике.
Загадочное слово «кварки» вот уже тридцать с лишним лет будоражит мир науки. Физики сами придумали эту «частицу из частиц» — самый мельчайший, изначальный «кирпичик» мироздания. В отличие, скажем, от электрона или протона, у которых заряд равен единице, у кварков он должен быть дробным — составлять от нее какую-то часть- И, следовательно, из кварков, как из «кирпичиков», могут состоять самые разные элементарные частицы.
Идея кварков была столь заманчивой, что их искали в космосе и на земле. Но до сих пор никому не удалось обнаружить их «следов». Не раз уже раздавались голоса, что в природе кварков нет. Но ставились новые эксперименты—и наука сталкивалась с явлениями, объяснить которые можно было, лишь согласившись, что кварки существуют.
Например, в нашей лаборатории были обнаружены неизвестные частицы, поведение которых становится- понятным, если допустить, что они состоят из 5 кварков. Косвенным доказательством существования кварков служит и обнаруженное нами другое явление: какие бы частицы ни попадали на ядро атома, все направленные процессы у них протекают одинаково.
Мы работаем на знаменитом дубнинском синхрофазотроне, который после реконструкции обрел «второе дыхание»: тяжелые ядра гелия, углерода, азота, кислорода на нем можно разгонять до субсветовых скоростей. Пока таких скоростей для ядер не может дать ни один из других ускорителей в мире. Именно здесь в результате наших экспериментов родилось новое направление в науке — релятивистская ядерная физика. Но если разобраться в сути наших работ, то получится, что мы не столько открываем, сколько «закрываем» элементарные частицы.
Еще десять лет назад физики считали, что существует более двухсот элементарных частиц. Однако дальнейшие исследования показали, что природа гораздо более экономна в своих свершениях; многие частицы, считавшиеся элементарными, оказались составными. В том числе — из тех же кварков и так называемых лептонов. Правда, долгое время оставалось загадкой, как же кварки «скрепляются» между собой? Но в последнее время наши эксперименты подтвердили существование еще одной частицы — глюона, которая как бы «склеивает» кварки.
Эти исследования изменили взгляды на строение вещества, позволили сделать еще один крупный шаг к созданию единой теории, описывающей свойства микромира. Сейчас физики близки к тому, чтобы объединить электромагнитное, слабое и сильное взаимодействия.
Правда, не стоит чрезмерно обольщаться — в природе еще немало загадочного. Таинственные «черные дыры», квазары, рождение Вселенной и вспышки сверхновых звезд — их можно объяснить, лишь познав процессы, происходящие в микромире. Например, двадцать лет назад в нашей лаборатории впервые в мире была обнаружена такая частица, как антисигма-минус гиперон. Потом были открыты антиатомы — антигелий и антитритий. А сегодня уже можно с большей долей надежды предположить, что существуют и антимолекулы. А значит, и антивещество.
Остается дать волю фантазии и предположить, что наряду с нашими мирами, во Вселенной существуют и антимиры. Кто знает, может быть, мы сумеем доказать эту гипотезу, проникнув еще глубже в строение атома?
Представьте себе совершенно фантастическую картину. Глубина — пять тысяч метров. Царство вечной темноты. Почти ничего живого. И вдруг со дна поднимается целый лес гигантских кабелей более полутора километров. На них колеблются приборы. Изредка то там, то здесь слабо блеснет луч света, и снова темнота. Так будет выглядеть в натуре глубоководная установка для регистрации одной из самых удивительных и загадочных частиц микромира — нейтрино. Над проектами таких «приборов» сейчас работают ученые многих стран мира. Вот что рассказал научный руководитель этой программы в СССР академик-секретарь отделения ядерной физики Академии наук СССР М. Марков.
Специфическим свойством нейтрино, выделяющим эту частицу среди других представителей микромира, является ее исключительно слабое взаимодействие с окружающим нас веществом. Для нее практически прозрачны Земля, Солнце и вся современная Вселенная. Мчась со скоростью света — 300 тысяч километров в секунду, — она пронзает галактики, звезды, туманности.
Большинство термоядерных реакций на ранних стадиях эволюции Вселенной и в недрах звезд сопровождается испусканием нейтрино. Поэтому в мире идет постоянное накопление этих частиц. Мы с вами буквально купаемся в потоке нейтрино, в самых разных точках и объектах Вселенной.
Нейтрино несут в себе информацию обо всей истории развития современных форм вещества Вселенной. Освоение этого бесценного источника сведений об окружающем нас мире представляет собой одну из центральных задач современной астрофизики.
Первые практические шаги начали делаться в 60-е годы. Американским физиком Р. Дэвисом был создан нейтринный детектор, работающий на основе метода, предложенного академиком Б. Понтекорво.
Установленный на глубине около полутора километров под землей, детектор регистрирует нейтрино, которые образуются в результате термоядерных реакций, протекающих в недрах Солнца.