Амбарцумян
Шрифт:
Приехав в Симеиз и посетив Шайнов, Виктор Амазаспович, естественно, обратил внимание и на Верочку. Яркая русская красота восемнадцатилетней Верочки мгновенно покорила сердце двадцатидвухлетнего юноши. Они сразу договорились о встрече в Ленинграде. Вера Фёдоровна поехала в Ленинград на учёбу, и в 1930 году Виктор Амазаспович под Новый год привёл Веру Фёдоровну в свою семью и представил своей женой. Брак был зарегистрирован гораздо позже. Так в жизни Виктора Амазасповича появился прекрасный, преданный на всю жизнь друг. А Александр Николаевич Дейч женился на Александре Михайловне.
Вера Фёдоровна (девичья фамилия Клочихина) родилась на Урале, в Соликамске. Её новгородские предки за непослушание были переселены на Урал ещё Иваном Грозным. Дед её, Фёдор Санников, был ходоком к Ленину. После смерти родителей, Фёдора и Елены Клочихиных, Верочку взяла к себе сестра её матери, Пелагея Фёдоровна, которая к тому времени окончила Бестужевские курсы, стала астрономом и вышла замуж за Г. А. Шайна.
Вера Фёдоровна родила Виктору Амазасповичу четырёх, в будущем успешно работающих в математике и физике детей: Карине — в 1933 году, Елену — в 1936 году, Рафаэла (впоследствии иностранный член НАН Армении) — в 1940 году и Рубена (впоследствии действительный член НАН Армении) — в 1941-м. Вера Фёдоровна была строгой, но бесконечно заботливой женой и матерью. Прожив в дальнейшем благополучную жизнь — 52 года — в Армении и полюбив родину своего мужа и армянский народ, она, однако, очень скучала
Семья Виктора Амазасповича в 1930-е годы жила в Ленинграде, на 7-й линии Васильевского острова. В 1934 году Виктору Амазасповичу присвоили звание профессора, а в 1935-м ему была присуждена без защиты диссертации учёная степень доктора физико-математических наук. В этом же году им была организована в университете кафедра астрофизики, которой он руководил до 1946 года.
Кроме проблем теоретической астрофизики и математической физики Виктор Амазаспович сильно увлёкся и теоретической физикой. Как он говорил, «не сумел устоять перед очарованием теоретической физики». Он самостоятельно стал изучать теорию Бора по строению атома, а с 1927 года — квантовую механику. Он досконально изучил работы Шрёдингера, посвящённые квантовой теории, и стал посещать прекрасные лекции Д. С. Рождественского [100] по строению атома. Следует отметить, что именно на этой почве он и познакомился с М. П. Бронштейном и Г. А. Гамовым, которые, в свою очередь, серьёзно увлекались астрофизикой.
100
Дмитрий Сергеевич Рождественский (1876–1940) — российский и советский физик, академик АН СССР. Труды по атомной спектроскопии. Организатор и первый директор Государственного оптического института (ГОИ).
В 1928–1929 годах ему попалась книга Р. Куранта и Д. Гильберта «Методы математической физики», о которой он высоко отзывался и которую он также досконально изучил.
Университетские лекции по астрофизике Виктор Амазаспович непременно увязывал с современной теоретической физикой, в частности с результатами квантовой механики. Для астрономов в университете он впервые начал читать спецкурс по теоретической физике.
Примерно в это время начала стремительно развиваться квантовая, или волновая, механика, которая впервые пыталась описать структуру атомов и понять их спектры. Корпускулярно-волновой дуализм материи потребовал нового подхода к описанию состояния физических систем и их измерений. В отличие от классической теории, все частицы в квантовой механике выступают как носители и корпускулярных, и волновых свойств, которые не исключают, а дополняют друг друга. В это время волновая природа электронов, протонов и других частиц уже была подтверждена опытами по дифракции частиц. Была установлена фундаментальная роль постоянной Планка (h) — одного из основных масштабов природы. Она отделяет область явлений, которые можно описывать классической физикой (когда h принимается равной нулю), от области тех явлений, для истолкования которых необходима квантовая теория. В основу квантовой электродинамики было положено подтверждённое на опыте представление о дискретности электромагнитного излучения. Кванты электромагнитного поля — фотоны — являются носителями минимально возможной при данной частоте поля (v) энергии (Е):
Е = hv.
К этому времени относится замечательная идея квантования пространства и времени, принадлежащая Амбарцумяну и Иваненко и независимо от них Гейзенбергу [101] . Зачем она потребовалась?
История с квантованием пространства такова. Ещё до появления квантовой механики А. Эддингтон указал на опасности, связанные с введением в теорию длин, малых по сравнению с размерами электронов. Эддингтон утверждал, что нет смысла говорить о длине порядка 10– 18 сантиметров, если самая мелкая существующая материальная единица, наверное, обладает во много раз большими размерами. Большими являются даже длины электромагнитных волн. Это очень важно, если захотеть ввести в квантовую механику понятие о конечных размерах электрона. Поэтому у Гейзенберга и, одновременно и независимо, у Амбарцумяна с Иваненко возникла идея «проквантовать четырёхмерное пространство — время», то есть построить такую теорию, в которой фигурировала бы «наименьшая возможная длина». А выход таков. Когда речь идёт о принципиальной невозможности измерять сколь угодно малые длины, легко можно представить такую теорию, при которой эта невозможность преодолена лоренцовским сокращением длины согласно принципу относительности при больших скоростях движения. В случае же волны невозможность измерения сколь угодно малой длины волны преодолевается эффектом Доплера при достаточно быстром движении источника излучения по направлению к наблюдателю.
101
Вернер Гейзенберг (1901–1976) — немецкий физик-теоретик. Один из создателей квантовой механики (совместно с Максом Борном и Паскуалем Йорданом). В 1925 году предложил матричный вариант квантовой механики, за что в 1932 году получил Нобелевскую премию. В 1927 году сформулировал принцип неопределённости. Философ естествознания. Амбарцумян и Иваненко с ним не встречались.
Оказалось, что из теории квантования пространства без всяких специальных гипотез, вроде гипотезы Дирака [102] , можно получить правильное отношение масс протона и электрона. Однако не следовало преувеличивать того численного совпадения, которое при этом получалось. Здесь нет строгих доказательств. Как пишет М. П. Бронштейн: «Мы должны считать вычисленным разве только лишь порядок величины искомого отношения масс. Но всё же самая возможность такого вычисления показывает, на наш взгляд, что мы здесь имеем дело не только с игрой математическими формулами, основанной на так называемых «размерностях», что дискретность пространства всё же, каким-то образом, связана с асимметрией масс протона и электрона, и что только дискретная геометрия даёт надежду на решение этой трудной головоломки» [103] .
102
Поль Дирак (1902–1984) — английский физик, один из создателей квантовой механики. Иностранный член АН СССР, лауреат Нобелевской премии (совместно с Э. Шрёдингером). Гипотеза Дирака основывалась на предположении о непостоянстве фундаментальных констант, в частности на изменении гравитационной константы G со временем. Данная гипотеза противоречит опытным данным.
103
Бронштейн М. П. Научное слово. 1931. № 1. С. 38–55.
Такова основная идея квантования пространства и времени. Но для её осуществления необходимо было построить дискретную геометрию, то есть такую, которая исключала бы всякую возможность оперировать с бесконечно малыми интервалами. Так Амбарцумян и Иваненко пришли к понятию решётки: обычное непрерывное пространство евклидовой геометрии заменяется дискретной совокупностью точек, образующих кубическую решётку, напоминающую расположение атомов в кристаллах кубической системы. Расстояние между двумя ближайшими узлами решётки и есть наименьший возможный интервал — постоянная решётки. В силу квантовой природы пространства электрон не может занимать место в промежутке между узлами решётки: он должен обязательно сидеть в одном из узлов. Все функции координат должны быть заданы таким образом, чтобы иметь смысл лишь в узлах решётки; остальные точки пространства не имеют физического смысла. Но такая решётка вводит и неоднозначность: стоит только провести через какой-нибудь узел прямые линии по направлению к ближайшим узлам, расположенным на расстоянии, равном постоянной решётки, чтобы получить привилегированную систему координат. Поскольку мы имеем дело с четырёхмерной решёткой, включающей и пространство, и время, то привилегированная система координат обозначает, очевидно, абсолютное время и три преимущественных направления в неподвижном пространстве. Но это противоречит и принципу относительности, и опыту: пространство — время в действительности изотропно, все координатные системы в нём равноправны, все уравнения инвариантны по отношению к преобразованиям Лоренца. Именно с этой трудностью, трудностью преодоления возникшей анизотропии в системе решётки не смог справиться Гейзенберг и перестал работать в этом направлении.
Путь к преодолению этой трудности был найден независимо Амбарцумяном и кембриджским математиком Урселлом. Описание такого преодоления выходит за рамки популярного описания этой сложной и до конца не завершённой теории. Во всяком случае, В. Паули [104] сомневался в окончательном решении задачи таким путём и считал создавшееся положение почти безнадёжным.
В 1929 году в Харькове состоялись представительные конференции, посвящённые вопросам квантовой физики. На конференциях присутствовали П. Йордан [105] , Паули, Дирак, Зоммерфельд, Гамов, Иваненко, Фок [106] , Ландау, Френкель [107] , Гельфанд [108] , Мусхелишвили [109] и многие другие видные физики.
104
Вольфганг Эрнст Паули (1900–1958) — австрийско-швейцарский физик, с его именем связано такое фундаментальное понятие квантовой механики, как спин элементарной частицы, он предсказал существование нейтрино и сформулировал «принцип запрета» — принцип Паули; лауреат Нобелевской премии по физике за 1945 год.
105
Паскуаль Йордан (1902–1980) — немецкий физик и математик. Один из основателей квантовой механики, работал с М. Борном, физиком В. Гейзенбергом. Труды в области математики, космологии, астрофизики и биофизики.
106
Владимир Александрович Фок (1898–1974) — советский физик-теоретик, основатель ленинградской научной школы, академик АН СССР, Герой Социалистического Труда, лауреат Сталинской и Ленинской премий. Фундаментальные труды по квантовой механике и электродинамике, общей теории относительности, математической физике.
107
Яков Илларионович Френкель (1894–1952) — советский физик-теоретик, член-корреспондент АН СССР, лауреат Сталинской премии. Труды по ферромагнетизму, ядерной физике.
108
Израиль Моисеевич Гельфанд (1913–2009) — советский математик, член-корреспондент АН СССР, лауреат Сталинской премии. Основные труды по функциональному анализу, математической физике, прикладной математике.
109
Николай Иванович Мусхелишвили (1891–1976) — советский математик, механик, академик АН СССР, Герой Социалистического Труда, лауреат Сталинских премий. Основные труды по теории упругости, интегральным уравнениям и граничным задачам теории аналитических функций.
На этих конференциях была представлена и вызвала огромный интерес идея Амбарцумяна — Урселла о теории квантования пространства — времени. Разработку этого понятия очень поддерживал Дмитрий Дмитриевич Иваненко, с которым Амбарцумян в те годы тесно сотрудничал. Однако Амбарцумяну, как и многим другим, показалось, что избранный путь не может привести к успеху. Дело в том, что в этом направлении в то время не было получено значительных результатов, и опубликованные Амбарцумяном две статьи развития не получили. Но впоследствии выяснилось, что Амбарцумян тогда несколько поторопился с выводами: идея квантования пространства нашла в дальнейшем широкое применение в теории элементарных частиц и теории поля и даже сегодня является важнейшей проблемой, но далеко не завершённой.
Теперь перейдём к другой, не менее важной проблеме квантовой теории.
Широкой публике малоизвестно, что 20-летний Амбарцумян и 24-летний Иваненко являлись авторами основополагающей идеи, высказанной всего через два года после создания квантовой механики Гейзенбергом и Шрёдингером, когда Дираком была основана квантовая электродинамика. Эта идея включалась в том, что не только кванты электромагнитного моля — фотоны, но и другие частицы (в том числе обладающие ненулевой массой покоя) могут рождаться и исчезать в результате их взаимодействия с другими частицами. Настоятельность такой идеи была связана с теми трудностями, с которыми столкнулась модель строения ядра, предложенная Э. Резерфордом [110] .
110
Эрнест Резерфорд (1871–1937) — британский физик новозеландского происхождения, известен как «отец» ядерной физики, создал планетарную модель атома. Лауреат Нобелевской премии по химии 1908 года.