Чтение онлайн

на главную

Жанры

Шрифт:

Основываясь на том, что при -распаде ядра испускают электроны, а в ядерной реакции под действием а-частиц из ядра азота выбиваются протоны, Резерфорд, естественно, предположил, что атомные ядра состоят как раз из протонов и электронов. Модель ядра Резерфорда по существу базировалась на очевидных классических представлениях, согласно которым из составной системы могут испускаться только такие частицы, из которых она состоит. Однако модель Резерфорда не смогла объяснить удержание электрона в ядре. Расчёты показывали, что для этого удержания требуется аномально сильное взаимодействие между электронами и протонами. Добавилась и другая трудность: наличие сплошного спектра при -распаде свидетельствовало о некоторой потере энергии, которая также не объяснялась моделью.

Возникшая ситуация, как говорил Н. Бор, породила ряд безумных гипотез. Такой же безумной показалась гипотеза Амбарцумяна и Иваненко, предположивших вопреки очевидности, что электрон

не содержится в ядре, а рождается в процессе -распада. Это соответствовало корпускулярно-волновому дуализму — основе квантовой физики. А именно: частицы, образующиеся при распаде какой-либо системы, могли и не содержаться ранее в самой этой системе. В качестве иллюстрации этого авторы приводили пример радиационного перехода атома из возбуждённого состояния в нормальное: фотон, испускаемый в этом процессе, вовсе не содержится в возбуждённом атоме, а рождается в результате электромагнитного взаимодействия, приводящего к этому переходу. В силу корпускулярно-волнового дуализма подобным образом может возникать при процессе -распада и электрон, не содержавшийся до этого в атомном ядре.

Это была большая смелость со стороны молодых исследователей, несмотря на то, что их гипотеза полностью соответствовала квантово-механическим представлениям. Не сразу приняли гипотезу В. Паули и Н. Бор. Всё разрешилось после открытия нейтрона в 1932 году и создания Э. Ферми [111] теории -распада. Ферми, по-видимому, не знал о гипотезе Амбарцумяна и Иваненко 1929 года и независимо пришёл к ней. Как рассказывал Б. Понтекорво [112] , самое трудное для Ферми было понять, что не только фотоны, но и массивные (с массой покоя, отличной от нуля) частицы могут рождаться и исчезать в результате взаимодействия их квантовых полей.

111

Энрико Ферми (1901–1954) — итальянский физик, внёсший большой вклад в развитие современной теоретической и экспериментальной физики, один из основоположников квантовой физики.

112

Бруно Максимович Понтекорво (1913–1993) — итальянский и советский физик (иммигрировал в СССР в 1950 году), лауреат Сталинской премии, академик АН СССР. Труды по замедлению нейтронов и их захвату атомными ядрами, нейтринной физике, слабым взаимодействиям, ядерной изомерии, астрофизике.

Таким образом, Амбарцумян был первым, указавшим на то, что в атомном ядре нет электронов (1929), а Иваненко, также впервые, предложил гипотезу наличия нейтронов в ядре атома (1930). Соответствующие статьи были опубликованы в Докладах Академии наук СССР и Докладах Французской академии наук («Comptes Rendues»). Об этом подробно рассказали академики РАН С. С. Герштейн и А. А. Логунов в своих воспоминаниях об Амбарцумяне и Иваненко.

В конце 1938 года были объявлены выборы в Академию наук. Ленинградский университет предложил кандидатуру Амбарцумяна. Газета «Правда» [113] поместила статью, в в которой говорилось о том, что академия должна избрать передовых учёных. В этой статье приводилось три-четыре примера таких учёных, среди которых было названо и имя Амбарцумяна. В январе 1939-го состоялись выборы, и Амбарцумян был избран членом-корреспондентом АН СССР. Газеты писали об этих выборах как о победе настоящей науки над тёмными силами.

113

Ежедневная общеполитическая газета, орган ЦК КПСС.

Глава восьмая ЗВЁЗДНАЯ ДИНАМИКА И ВОЗРАСТ ГАЛАКТИКИ

Статистико-механические методы изучения звёздных систем

В научных трудах раннего периода В. А. Амбарцумяна особое место заняли работы по звёздной астрономии, в частности по динамике звёздных систем. Амбарцумян постоянно и упорно искал закономерности, проливающие свет на катастрофические явления в туманностях, звёздах, звёздных агрегатах, во внегалактических объектах — галактиках, квазарах и квазизвёздных объектах, находящихся в состоянии неустойчивости. Он считал, что суть физических процессов в звёздах и галактиках наилучшим образом выявляется в экстремальные, поворотные, быть может, даже в катастрофические моменты их жизнедеятельности. Но общепонятный физический смысл нестационарности небесных тел нужно было сформулировать в строго математических терминах. Амбарцумян прежде всего пишет руководство — «Статистико-механические методы изучения звёздных систем». К сожалению, рукопись осталась неопубликованной, но на её основе

в 1930-х годах он читал в Ленинградском университете лекции по звёздной динамике. Она послужила основой многочисленных трудов для него и других астрономов, его коллег и учеников.

Первым неоспоримым успехом приложения разработанной Амбарцумяном статистической механики звёздных систем явилось получение в 1936 году очень важной формулы для потенциальной энергии самогравитирующей сферической системы. Соответствующая статья была опубликована, однако осталась незамеченной, и в 1954 году эту формулу независимо вывел Шварцшильд, которому она была приписана в «Пулковском курсе астрофизики и звёздной астрономии». Из этой формулы непосредственно следует знаменитая формула Кинга для гравитационного потенциала.

Затем последовало решение вопроса о рассеянии открытых звёздных скоплений в Галактике.

В 1930-х годах С. Росселанд [114] исследовал рассеяние звёздных скоплений Галактики. Он, естественно, заметил, что когда дисперсии скоростей звёзд скопления и поля сравниваются, то скопление «расплывается». Он оценил характерное время такого процесса, которое можно считать верхним пределом возраста скоплений. Оказалось, что для рассеянных звёздных скоплений возраст не превосходит 1010 лет. В 1934 году Б. Бок [115] обратил внимание на значительную роль приливных сил в эволюции звёздных скоплений, однако при математическом анализе своих упрощённых моделей он сделал несколько ошибок, исправление которых, как показал Л. П. Осипков [116] , не повлияло на выводы качественного характера.

114

Свен Росселанд (1894–1985) — норвежский астроном, президент Академии наук Норвегии. Труды по внутреннему строению звёзд, переносу излучения и др.

115

Барт Джон Бок (1906–1983) — американский астроном голландского происхождения. Впервые описал небольшие, тёмные, почти сферические туманности, сильно поглощающие свет, — глобулы Бока, связанные с начальной стадией формирования звёзд.

116

Леонидом Петровичем Осипковым (СПбГУ, кафедра космических технологий и прикладной астродинамики) написан прекрасный обзор работ В. А. Амбарцумяна: «Статистическая механика звёздных систем: от Амбарцумяна и далее» (Астрофизика. 2008. Т. 51. Вып. 4. С. 505–522).

Редактируя русский перевод книги Росселанда, Амбарцумян заметил, что существует механизм разрушения плотных звёздных скоплений более эффективный, чем рассмотренный Росселандом, — это испарение, точнее самоиспарение, или диссипация звёзд, вследствие их сближения друг с другом. Члены звёздного скопления, двигаясь, иногда сближаются друг с другом и обмениваются при этом энергиями. В результате таких обменов отдельные звёзды приобретают столь большие кинетические энергии, что безвозвратно покидают скопление. Таким образом, Амбарцумяном было установлено, что причиной диссипации является взаимодействие звёзд при сближениях, когда энергия некоторых звёзд становится выше, чем энергия отрыва. Это объясняется тем, что из-за отсутствия потенциального барьера на границе звёздных систем некоторые из звёзд приобретают в результате взаимодействия между собой скорости, превышающие параболическую скорость, и улетают из системы. С течением времени так должно испариться всё скопление.

Отсюда следовало, что открытые звёздные скопления, являющиеся существенными составными образованиями в Галактике, не могут существовать больше 109—1010 лет.

Таким образом, стало ясно и то, что скопления не возникают из независимых друг от друга звёзд общего звёздного поля Галактики, а наоборот, разрушаясь, как бы становятся источником, питающим это общее поле. Стало ясно, что звёзды каждого скопления возникли совместно и имеют общее происхождение.

Сложность проблемы и заслуга Амбарцумяна заключается в том, что он сумел точно оценить время испарения членов звёздной системы и сравнить его со временем её релаксации, достижения статистического равновесия.

Надо заметить, что этот механизм разрушения был известен Пуанкаре и Эддингтону, но до Амбарцумяна никто не пытался оценить время такого разрушения.

Полемика с Джеймсом Джинсом

Далее Амбарцумяну удалось уточнить возраст нашей Галактики.

Чтобы определить возраст нашей Галактики, необходимо было точно выяснить, насколько «успокоилась» наша гигантская звёздная система после её образования, в какой степени наступило статистическое равновесие в динамике двойных звёзд.

Поделиться:
Популярные книги

Леди Малиновой пустоши

Шах Ольга
Любовные романы:
любовно-фантастические романы
6.20
рейтинг книги
Леди Малиновой пустоши

Пропала, или Как влюбить в себя жену

Юнина Наталья
2. Исцели меня
Любовные романы:
современные любовные романы
6.70
рейтинг книги
Пропала, или Как влюбить в себя жену

Сердце Дракона. нейросеть в мире боевых искусств (главы 1-650)

Клеванский Кирилл Сергеевич
Фантастика:
фэнтези
героическая фантастика
боевая фантастика
7.51
рейтинг книги
Сердце Дракона. нейросеть в мире боевых искусств (главы 1-650)

Измена. Право на сына

Арская Арина
4. Измены
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Измена. Право на сына

Всплеск в тишине

Распопов Дмитрий Викторович
5. Венецианский купец
Фантастика:
попаданцы
альтернативная история
5.33
рейтинг книги
Всплеск в тишине

Я — Легион

Злобин Михаил
3. О чем молчат могилы
Фантастика:
боевая фантастика
7.88
рейтинг книги
Я — Легион

Долг

Кораблев Родион
7. Другая сторона
Фантастика:
боевая фантастика
5.56
рейтинг книги
Долг

И только смерть разлучит нас

Зика Натаэль
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
И только смерть разлучит нас

Лорд Системы 4

Токсик Саша
4. Лорд Системы
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Лорд Системы 4

Камень. Книга восьмая

Минин Станислав
8. Камень
Фантастика:
фэнтези
боевая фантастика
7.00
рейтинг книги
Камень. Книга восьмая

Гарем вне закона 18+

Тесленок Кирилл Геннадьевич
1. Гарем вне закона
Фантастика:
фэнтези
юмористическая фантастика
6.73
рейтинг книги
Гарем вне закона 18+

Возвращение Низвергнутого

Михайлов Дем Алексеевич
5. Изгой
Фантастика:
фэнтези
9.40
рейтинг книги
Возвращение Низвергнутого

Неудержимый. Книга XI

Боярский Андрей
11. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Неудержимый. Книга XI

Месть за измену

Кофф Натализа
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Месть за измену