Ампер
Шрифт:
Назначение Ампера профессором математики сыграло в его жизни важную роль, усилив его творческую активность в области математических наук. В ближайшее время он разрабатывает ряд математических проблем, которые представляют собою значительный интерес. Эти работы послужили также основанием для избрания Ампера в члены Французского института. Математические работы Ампера затрагивают очень важные темы чистой и прикладной математики.
Для Ампера математика никогда не была самоцелью. Он всегда рассматривал ее как мощный и гибкий аппарат для решения и анализа тех или иных проблем науки о природе или технике. Первая математическая работа Ампера, посвященная теории вероятностей, точно также носила прикладной характер. Интересно отметить, что в 1809 году Ампер получил возможность практически применить свои обширные познания в области теории вероятностей. Правительство разрабатывало план постройки убежищ для стариков. Чтобы учесть необходимые затраты, надо было определить, сколько в среднем в год будет людей, нуждающихся в таком убежище. Правительство предложило этот вопрос Институту, и непременный секретарь его Деламбр, знакомый с работами Ампера в области теории вероятностей,
Большинство его зрелых математических работ касается либо тех отделов математики, прикладной характер которых совершено ясен, либо тех или иных приложений математики к механическим или физическим проблемам. Так, заинтересовавшись вопросом об основах механики, Ампер разрабатывает новый метод доказательства так называемого «принципа или начала возможных перемещений».
«Принцип возможных перемещений» является одним из основных принципов теоретической механики. Как известно, механика распадается на статику, изучающую законы равновесия тел, кинематику, изучающую геометрические свойства движения, и динамику, изучающую движение тел в связи с силами, которые его производят. Существует целый ряд общих принципов механики, которые объединяют эти отделы в некотором общем выражении. Рассматривая перемещение какого-либо тела, мы видим, что оно определяется не только действующими на тело силами, но и условиями, ограничивающими свободу его движения. Эти условия, ограничивающие свободу движения данного тела, называются обычно связями. Таким образом, перемещение тела определится действующими на него силами и существующими связями. Значение принципа возможных перемещений и состоит как раз в том, что оно устанавливает общий метод для вывода уравнений движения тел (дифференциальных уравнений) при какой угодно системе связей. Это колоссально расширяет круг могущих быть рассмотренными задач. Математики и механики приложили много труда, чтобы доказать этот принцип. Однако эти доказательства, которые строили Лаплас, Лагранж и другие ученые, всегда основывались на различных гипотезах о природе сил (так называемых реакций), вызываемых связями. Надо сказать, что в гипотезах всегда имеется известный элемент произвола. Поэтому этот принцип надо рассматривать как принцип, который находит свое обоснование в том, что выводимые из него уравнения перемещений или равновесия тел всегда подтверждаются на опыте. Принцип возможных перемещений был отчетливо сформулирован в конце XVIII века, а в начале XIX века многие ученые работали над тем, чтобы дать его доказательства. Одно из таких доказательств было предложено Ампером. Несмотря на свое остроумие, доказательство Ампера имеет ныне только исторический интерес. Однако весь комплекс работ Ампера по проблемам механики значительно обогатил эту науку.
Ампер принимает развитую его другом Френелем волновую теорию света. Но Френель не дал полного математического анализа основного понятия своей теории — волновой поверхности. Ампер берется за эту задачу и дает стройное, хотя и несколько сложное решение ее.
Продолжая размышлять над проблемами механики, курс которой Ампер читал в Политехнической школе, он пишет работу об одной из проблем того отдела механики, который изучает вращение твердого тела вокруг какой-либо его оси.
Механика в целом распадается на три отдела в зависимости от того, движение каких тел изучается. Соответственно этому возникает: механика твердого тела, механика жидкостей — гидромеханика, и аэромеханика. Отдел теоретической механики, изучающий движение, связанное с упругостью тел, — колебания и волны, — разросся ввиду своего значения в самостоятельный раздел. Некоторые другие части механики тоже выросли в большие научные области. Все они представляют как бы отпочкования и разветвления общей механики. Механика твердого тела изучает ряд проблем движения твердого тела (например, механического шара или камня), рассматриваемого как единое, неизменное целое. Одной из таких проблем является исследование законов вращения твердого тела вокруг какой-либо его оси. Каждый знает любопытные свойства волчка, практические применения которых имеют весьма большое распространение в виде так называемых гироскопов. Каждый слышал о том, что массивный стальной маховик, приведенный в слишком быстрое вращение, разрывается. Все эти и многие другие вопросы и изучает механика твердого тела. Ее практическое значение очень велико. Она представляет собою один из интереснейших отделов теоретической механики. Решение задач механики твердого тела наталкивается на серьезные математические трудности. Преодоление этих математических трудностей, нахождение наиболее простых и удобных методов решения задач механики твердого тела представляло собою проблему, которой занимались многие крупнейшие ученые-математики. В разработке этих методов принял участие и Ампер, написавший работу, весьма сочувственно встреченную учеными того времени. Отдельные моменты этой объемистой работы не утратили своего значения и до нашего времени и вошли в состав механики твердого тела как ее необходимый элемент. Затем он печатает большую работу, в которой рассматривает применение в механике нового математического метода — вариационного исчисления, незадолго до того разработанного Эйлером и Лагранжем.
Значение развитых Ампером математических методов было как следует оценено только в середине XIX века, когда начало выясняться огромное значение для механики так называемой «теории преобразования».
Эта сложная математическая теория представляет собою один из наиболее глубоких отделов теоретической механики. Как известно, теоретическая механика зиждется на. трех основных законах Ньютона. Первый, из этих законов определяет свойство инерции, состоящее в том, что изолированное от каких-либо внешних воздействий тело движется равномерно и прямолинейно до тех пор, пока на него не действует никакое другое тело. Второй закон
Из числа разнообразных математических методов наибольшее значение для решения физических задач имели дифференциальные уравнения в частных производных. Собственно говоря, математическая физика исчерпывалась пятью-шестью типами таких уравнений, но решение их равносильно решению той или иной физической проблемы и представляет значительные математические трудности. Над преодолением этих трудностей бились многие крупнейшие математики. Ампер также представил Французской академии большую работу на эту тему. В этой работе он дал целый ряд методов и теорем, которые вошли составным элементом в теорию дифференциальных уравнений в частных производных.
Уже перечисленного достаточно, чтобы увидеть, насколько солидны заслуги Ампера в области математики. Но кроме этих работ, он опубликовал еще несколько математических исследований, и в электродинамике дал неувядаемый образец применения математики к физическим проблемам.
Мы не имеем возможности излагать здесь содержание чисто математических работ Ампера. Они относятся к весьма отвлеченным и тонким отраслям математического анализа. Отметим лишь, что они имели весьма большое значение в развитии высшей математики.
Именно в качестве математика Ампер был выбран в члены Французского института — этого высшего ученого учреждения Франции. До 1789 года во Франции было пять отдельных академий. Конвент вынужден был упразднить их «как учреждения аристократического характера, позорящие науки и ученых».
В 1795 году Директория учредила Национальный институт наук и искусств, который должен был «совершенствовать науки и искусства». Пять отделений Института получили уже при Людовике XVIII название академий. Выборы новых членов производились по освобождении мест за смертью членов академии.
В то время по разделу математических наук членами Института являлись: Лагранж, Лаплас, Лежандр, Боссю и ряд других.
В 1813 году умер Лагранж. 11 апреля 1813 года Ампер пишет Бредену: «Мне сообщили о смерти Лагранжа… Итак, вот вакантное место в Институте… Мне нужно будет выступить в качестве соискателя… Нужно будет сделать целых шестьдесят визитов… Я буду день и ночь работать над мемуаром. Скажи об этом Балланшу и Депре, но больше никому, чтобы мне не оказаться лишний раз посмешищем».
Двадцать третьего апреля он уезжает в инспекторское турне, а 30 апреля узнает о полном провале своей кандидатуры. Он получил всего один голос, остальные голоса достались конкурировавшему с ним Пуансо. Эту неудачу Ампера можно объяснить не только тем, что заслуги Пуансо перед наукой в то время были, может быть, более значительны, чем заслуги Ампера, но также и причинами политического порядка.
Наполеон, этот дальновидный деспот, по-своему покровительствовал наукам. Еще во время Директории его избирают членом Института. Во время V Египетского похода он гордо отмечает в заголовке своих прокламаций: «Бонапарт, главнокомандующий, член Института», и позже в статьях прихода своего цивильного листа Наполеон на первом месте помещает: «Жалованье его величества императора и короля в качестве члена Института— 1500 франков». Прекрасно отдавая себе отчет в роли и значении науки в развитии капиталистического производства, Наполеон умело использует ее и направляет в духе своей экономической политики. Стендаль справедливо замечает, что «в ту эпоху какой-нибудь аптекарский ученик, копошась в своих пилюлях и пробирках в задней комнате магазина, думал про себя, скатывая пилюли и фильтруя жидкости, что если бы он сделал какое-либо открытие, то мог бы стать графом с 50 тысячами ливров дохода».
В 1813 году двадцать три члена Института заседают в сенате. Зоолог Ласепед — великий канцлер «Почетного легиона» и пятьдесят шесть кавалеров, баронов, графов и князей, получивших эти титулы от императора, являются членами Института. Ампер же остается в стороне от всего этого потоку почестей и золота. Это находит свое объяснение как в его изолированной, замкнутой, оторванной от реальной политики жизни, так и в его антибонапартистских настроениях, которые, несмотря на его крайнюю осторожность в политических высказываниях, были хорошо известны наполеоновской полиции.