Анализы. Полный медицинский справочник. Ключевые лабораторные исследования в одной книге
Шрифт:
Co-оксиметрия представляет собой анализ газового состава крови и относится к спектроскопическому методу. Данный анализ дает возможность количественного измерения параметров крови, таких как оксигенированный, деоксигенированный гемоглобин, карбоксигемоглобин, метгемоглобин, в процентах от общей концентрации гемоглобина в крови. Данные параметры крови измеряются спектрометром на пропускание/поглощение 380–780 нм.
Современные приборы для измерения гемоглобина
Фотоэлектрические гемоглобинометры измеряют концентрацию гемоглобина, сразу выдавая на дисплее показания в г/100 или 1000 мл. В зависимости от задействованного метода, приборы калибруются растворами гемиглобинцианида или гемихрома.
Фотометры
Изменения гемоглобина при патологии
Существуют физиологические и патологические виды гемоглобина. У здорового человека существуют три основных типа гемоглобина: примитивный – Р, фетальный – F, взрослый – А.
Гемоглобинопатии (гемоглобинозы) обусловлены наследственной аномалией белковой части гемоглобина, они связаны с нарушением синтеза гемоглобина.
В настоящее время установлено более 600 аномальных гемоглобинов.
Серповидно-клеточная анемия является проявлением одной из наиболее важных в клиническом отношении гемоглобинопатий. На молекулярном уровне вследствие мутаций структурных генов, контролирующих синтез цепей глобина, происходит замещение аминокислоты глутамина на аминокислоту валин. При этой патологии специфическим свойством крови является приобретение эритроцитами серповидной формы при снижении парциального давления кислорода в окружающей среде. На этом основана и специальная диагностическая проба. Для обнаружения подобного явления создают венозный застой с гипоксией путем перетяжки пальца на 5 мин. При добавлении к капле крови после этой процедуры восстановителя – метабисульфита натрия – также образуются серповидно-клеточные эритроциты. При электрофорезе гемоглобина выявляется дополнительная полоса.
Эритроциты
Жизненный цикл эритроцитов
Эритроцит происходит из исходной мезенхимальной клетки, которая превращается в ретикулярную (гемогистобласт), который переходит в гемоцистобласт, превращающийся вэритробласт, характерной особенностью которого является наличие огромного ядра и отсутствие гемоглобина. В последующем эритробласт превращается в нормобласт первого, второго, третьего порядка. В этой стадии уменьшается ядро, клетка наполняется гемоглобином. Он превращается в молодой эритроцитретикулоцит. В этот период снижается его двигательная активность и ретикулоцит превращается в зрелый ретикулоцит. У здоровых взрослых число ретикулоцитов составляет 0,2–1,2%.
Активная часть жизненного цикла эритроцитов протекает в периферической крови, куда они поступают в стадии ретикулоцитов. Превратившись через 1–3 дня в зрелые эритроциты, они циркулируют в организме около 120 дней. Созревание ретикулоцита сопровождается существенными изменениями в обмене веществ: прекращается значительная часть синтетических процессов, почти полностью утрачивается способность к дыханию. Эритроцит приспособлен к функции транспорта кислорода от легких к тканям и углекислого газа от тканей к легким. Основной путь обмена энергии в эритроцитах – гликолиз. Энергия гликолиза используется для активного транспорта катионов через клеточную мембрану и поддержания нормального соотношения между ионами калия и натрия в эритроцитах и плазме, а также для сохранения целостности мембраны и двояковогнутой формы клетки. Образующийся НАДФ предотвращает окисление гемоглобина в метгемоглобин. Кроме того, в эритроците происходит прямое окисление небольшого количества глюкозы в глюкозо-монофосфатном шунте с образованием восстановленного НАДФ, который используется для восстановления глютатиона. Восстановленный глютатион предохраняет мембрану клетки и предотвращает необратимое окисление гемоглобина.
В физиологических условиях стареющие эритроциты удаляются из циркуляции и разрушаются преимущественно в селезенке, печени и в меньшей степени в костном мозге клетками системы фагоцитирующих мононуклеаров. Часть эритроцитов распадается в сосудистом русле, гемоглобин соединяется с гаптоглобином в необратимый комплекс, который не проникает через почечный фильтр, а ферментативно расщепляется, главным образом в печени. При значительном гемолизе избыток гемоглобина попадает в почки. Здесь часть гемоглобина экскретируется с мочой, часть реабсорбируется в проксимальном отделе канальцев, часть гемоглобинового железа откладывается в эпителии канальцев в виде ферритина и гемосидерина, постепенно выделяясь с мочой.
Основным стимулом к повышению эритропоэтической активности служит гипоксия любого генеза. Стимулом эритропоэза обладают андрогены благодаря способности повышать биосинтез эритропоэтина. Эритропоэтин – фактор, участвующий в регуляции эритропоэза. Он влияет на процесс развития эритроидных клеток – ускоряет построение гемоглобина, способствует освобождению ретикулоцитов из костного мозга.
Определение количества эритроцитов
Метод подсчета в счетной камере. Кровь предварительно разводят с целью уменьшения числа клеток, подлежащих счету. В химические пробирки отмеривают пипеткой по 4 мл 3%– ного раствора хлорида натрия и осторожно выдувают в нее 0,02 мл капиллярной крови (кровь забирают пипеткой от геометра Сали). Полученное разведение можно практически принять равным 1 : 200. Взвесь тщательно перемешивают и затем заполняют камеру с сетками Горяева. Сетка Горяева состоит из 225 больших квадратов (15 x 15). Большие квадраты, расчерченные вертикально и горизонтально на 16 малых квадратов, чередуются с квадратами, разделенными только вертикальными или горизонтальными линиями, и с квадратами чистыми, без линий. Глубина камеры равна 1/10 мм, сторона малого квадрата – 1/20 мм; объем малого квадрата равен 14 000 мм3.
Перед заполнением камеру и шлифованное покровное стекло моют и сушат. Покровное стекло притирают к камере так, чтобы появились радужные кольца. Каплю разведенной крови вносят пипеткой под притертое покровное стекло камеры. После заполнения камеру оставляют на 1–2 мин в покое для оседания форменных элементов, затем приступают к подсчету при малом увеличении микроскопа в затемненном поле зрения (прикрытой диафрагме и опущенном конденсоре). Эритроциты считают в 5 больших квадратах (5 x 16 = 80 малым квадратам), расположенных по диагонали. Для этого отыскивают левый верхний большой разграфленный квадрат, подсчитывают количество находившихся в нем эритроцитов, затем по диагонали вниз и направо находят следующий такой квадрат и т. д. Для того чтобы дважды не сосчитать одни и те же клетки, лежащие на пограничных линиях, соблюдают правило: кданному квадрату принадлежат клетки, находящиеся большей своей частью внутри него, разделенные пограничной линией; считают только на верхней и левой границе квадрата.
Количество эритроцитов в 1 мл крови рассчитывают путем деления произведения из числа сосчитанных эритроцитов (а), 4000 (приведение к объему 1 мкл крови) и 200 (степень разведения) – а x 4000 x 200 x 80 (количество малых квадратов).
При взаимосокращении получается произведение – а x 10 000, т. е. число подсчитанных эритроцитов в 5 больших квадратах на 10 000. Ошибка метода в среднем равна ±2,5%.
Электронно-автоматический метод. Наибольшее распространение нашел импульсный принцип, основанный на разнице электропроводности частиц крови и жидкости, используемой для разбавления. На нем работают счетчики «Целлоскоп» (Швеция) и «Культер» (Франция).
Кровяные тельца, взвешенные в изотоническом растворе хлорида натрия, всасываются через микроотверстие диаметром 100 мкм, с обеих сторон которого подведено по одному платиновому электроду. Скачкообразные повышения сопротивления, возникающие при прохождении частиц крови через капилляр, вызывают электрические импульсы, амплитуда которых прямо пропорциональна объему частиц. Импульсы усиливаются, подсчитываются в электронном устройстве. Производительность аппаратов этого типа велика: весь процесс от введения образца до получения результата происходит в течение 20 с при ошибке 1–2%.