Апология математики, или О математике как части духовной культуры
Шрифт:
Что же касается вопроса, чтбо именно из математики, причем из математики неприкладной, должно входить в общеобязательный культурный минимум, то однозначный ответ на этот вопрос вряд ли уместен. Каждый должен определять этот минимум для себя. Задача общества - предоставить своему члену ту информацию о математических понятиях, идеях и методах, откуда этот субъективный минимум можно было бы выбирать. Вообще, знание есть дело добровольное, и насилие тут неуместно. На ум приходит замечательное высказывание, принадлежащее Сухарто (второму президенту Индонезии - не путать с первым её президентом, Сукарно): “В наше время чрезвычайно трудно заставить кого-либо сделать что-либо добровольно”. Иногда, тем не менее, в дальнейшем изложении будут встречаться рекомендации о включении в математический минимум тех или иных знаний; эти рекомендации не предлагаются как нечто категорическое и даются лишь в качестве возможных примеров и материала для дальнейшего обсуждения. Школьная программа по математике - слишком болезненная тема, чтобы её здесь затрагивать (хотя эта тема не может не волновать, поскольку касается миллионов наших детей). Ограничусь мнением, что хорошо бы в этой программе устранить перекос
Замечу в заключение, что математика входит в мировую культуру и своим этическим аспектом. Наличие такового у математики может показаться странным. Он, однако, есть. Математика не допускает лжи. Она требует, чтобы утверждения не просто провозглашались, но и доказывались. Она учит задавать вопросы и не бояться непонимания ответов. Она по природе демократична: её демократизм обусловлен характером математических истин. Их непреложность не зависит от того, кто их провозглашает, академик или школьник. Приведу такой пример. Некий третьекурсник механико-математического факультета МГУ осмелился опровергнуть одно из утверждений лектора, лектором же был не кто иной, как сам Колмогоров. После чего третьекурсник был немедленно приглашён Колмогоровым посетить его дачу, где и был произведён в ученики.
Данный текст писался не для математиков, а скорее для гуманитариев. Поэтому при его составлении в ряде случаев приходилось выбирать между понятностью и точностью. Предпочтение отдавалось понятности. (Достигнуть абсолютной точности всё равно невозможно. Невозможно, впрочем, достигнуть и абсолютной понятности - как и вообще чего-либо абсолютного.) За неточность прошу прощения у математиков, а всякому, любезно указавшему на непонятное место, приношу искреннюю благодарность.
Глава 2. Теорема Пифагора и теорема Ферма
В кажущемся противоречии с настойчивым подчёркиванием, что в данном очерке нас интересует именно непрактический, неприкладной аспект математики, мы предполагаем весьма и весьма поучительным включение в «джентльменский набор» математических представлений знание того, почему треугольник со сторонами 3, 4, 5 назывется египетским. А всё дело в том, что древнеегипетские строители пирамид нуждались в способе построения прямого угла. Вот требуемый способ. Верёвка разбивается на 12 равных частей, границы между соседними частями помечаются, а концы веревки соединяются. Затем верёвка натягивается тремя людьми так, чтобы она образовала треугольник, а расстояния между соседними натягивателями составляли бы, соответственно, 3 части, 4 части и 5 частей. В таком случае треугольник окажется прямоугольным, в коем стороны 3 и 4 будут катетами, а сторона 5 - гипотенузой, так что угол между сторонами 3 и 4 будет прямым. Боюсь, что большинство читателей в ответ на вопрос «Почему треугольник окажется прямоугольным?» сошлётся на теорему Пифагора: ведь три в квадрате плюс четыре в квадрате равно пяти в квадрате. Однако теорема Пифагора утверждает, что если треугольник прямоугольный, то в этом случае сумма квадратов двух его сторон равна квадрату третьей. Здесь же используется теорема, обратная к теореме Пифагора: если сумма квадратов двух сторон треугольника равна квадрату третьей, то в этом случае треугольник прямоугольный. (Не уверен, что эта обратная теорема занимает должное место в школьной программе.)
Кажущееся противоречие, упомянутое в начале абзаца, заключается в том, что, обещав говорить о неутилитарном аспекте математики, мы сразу же перешли к её практическому применению. Оно потому названо кажущимся, что описанное применение обратной теоремы Пифагора принадлежит далёкому прошлому. Сейчас едва ли кто-либо строит прямой угол указанным способом: этот способ переместился из мира практики в мир идей - как и вообще многие воспоминания о материальной культуре прошлого вошли в духовную культуру настоящего.
Изложенная только что тема содержит в себе три подтемы: прямой угол, треугольник и равенство 32 + 42 = 52. В каждой из этих подтем можно усмотреть некие элементы, относящиеся к тому, чтбо автор этих строк понимает под общечеловеческой культурой. Приведём примеры таких элементов.
Сперва о понятии прямого угла. Это понятие может быть использовано для интеллектуального обогащения. Поставим такую задачу: объяснить, какой угол называется прямым, но объяснить не на визуальных примерах, а вербально - например, по телефону. Вот решение. Надо попросить собеседника мысленно взять две жерди, соединить их крест-накрест и заметить, что в точке соединения сходятся четыре угла; если все эти углы окажутся равными друг другу, то каждый из них и называют прямым. Какая же тут духовная культура, если речь идёт о жердях!
– возмутится критически настроенный читатель. Но суть здесь, конечно же, не в жердях, а в опыте вербального определения одних понятий через другие. Такой опыт поучителен и полезен, а возможно, что и необходим. Математика вообще представляет собою удобный полигон для оттачивания искусства объяснения. Адресата объяснений следует при этом представлять себе тем внимающим афинскому софисту любопытным скифом, о котором писал Пушкин в послании «К вельможе». Объяснение признаётся успешным, если есть ощущение, что любопытный скиф его поймёт.
Теперь - пример из жизни треугольников. Речь пойдёт о триангуляции. Триангуляция - это сеть примыкающих друг к другу, наподобие паркетин, треугольников различной формы; при этом существенно, что примыкание происходит целыми сторонами, так что вершина одного треугольника не может лежать внутри стороны другого. Триангуляции сыграли важнейшую роль в определении расстояний на земной поверхности, а тем самым и в определении фигуры Земли.
Потребность в измерении больших, в сотни километров, расстояний - как по суше, так и по морю - появилась ещё в древние времена. Капитаны судов, как известно из детских книг, меряют расстояния числом выкуренных трубок. Близок к этому метод, применявшийся во II веке до н. э. знаменитым древнегреческим философом, математиком и астрономом Посидонием, учителем Цицерона: морские расстояния Посидоний измерял длительностью плавания (с учётом, разумеется, скорости судна). Но ещё раньше, в III веке до н. э., другой знаменитый древний грек, заведующий Александрийской библиотекой математик и астроном Эратосфен, измерял сухопутные расстояния по скорости и времени движения торговых караванов. Можно предполагать, что именно так Эратосфен измерил расстояние между Александрией и Сиеной, которая сейчас называется Асуаном (если смотреть по современной карте, получается примерно 850 км). Это расстояние было для него чрезвычайно важным. Дело в том, что Эратосфен считал эти два египетских города лежащими на одном и том же меридиане; хотя это в действительности не совсем так, но близко к истине. Найденное расстояние он принял за длину дуги меридиана. Соединив эту длину с наблюдением полуденных высот Солнца над горизонтом в Александрии и Сиене, он, далее, путём изящных геометрических рассуждений, вычислил длину всего меридиана, а тем самым и величину радиуса земного шара.
Ещё в XVI веке расстояние (примерно стокилометровое) между Парижем и Амьеном определялось при помощи счёта оборотов колеса экипажа. Очевидна приблизительность результатов подобных измерений. Но уже в следующем столетии голландский математик, оптик и астроном Снеллиус изобрёл излагаемый ниже метод триангуляции и с его помощью в течение 1615 - 1617 годов измерил дугу меридиана, имеющую угловой размер в один градус и одиннадцать с половиной минут.
Посмотрим, как триангуляция позволяет определять расстояния. Сперва триангулируется полоса земной поверхности, включающая в себя оба пункта, расстояние между которыми хотят найти. Затем выбирается один из треугольников триангуляции; будем называть его начальным. Далее выбирается одна из сторон начального треугольника. Она объявляется базой, и ее длина тщательно измеряется. В вершинах начального треугольника строятся вышки - с таким расчётом, чтобы каждая была видна из других вышек. Поднявшись на вышку, расположенную в одной из вершин базы, измеряют угол, под которым видны две другие вышки. После этого поднимаются на вышку, расположенную в другой вершине базы, и делают то же самое. Так, в результате непосредственного измерения, возникают сведения о длине одной из сторон начального треугольника (а именно о длине базы) и о величине прилегающих к ней углов. По формулам тригонометрии вычисляются длины двух других сторон этого треугольника. Каждую из них можно принять за новую базу, причём измерять её длину уже не требуется. Применяя ту же процедуру, можно теперь узнать величины сторон и углов любого из треугольников, примыкающих к начальному. И так далее. Важно осознать, что непосредственное измерение какого-либо расстояния проводится только один раз, а дальше уже измеряются только углы между направлениями на вышки, что несравненно легче и может быть сделано с высокой точностью. По завершении процесса оказываются установленными величины всех участвующих в триангуляции отрезков и углов. А это, в свою очередь, позволяет находить любые расстояния в пределах участка поверхности, покрытого триангуляцией. Именно так в XIX веке была найдена длина дуги меридиана от Северного Ледовитого океана до Дуная. Триангуляция содержала 258 треугольников, длина дуги оказалась равной 2800 км. Чтобы подавить неточности, при измерениях неизбежные, а при вычислениях возможные, десять баз были подвергнуты непосредственному измерению на местности.
Формулы тригонометрии, упомянутые выше, входят в школьную программу. Подавляющему большинству после школы они никогда не понадобятся, разве что на вступительных экзаменах, и их можно спокойно забыть. Знать - и не только знать, но и осознавать, понимать надо следующее (и именно это входит в обязательный, на наш взгляд, интеллектуальный багаж): треугольник однозначно определяется заданием любой его стороны и прилегающими к ней углами, и этот очевидный факт может быть использован и реально используется для измерения расстояний методом триангуляции. Если всё же кому-нибудь когда-нибудь и понадобятся формулы тригонометрии, их легко можно будет найти в справочниках. Учат ли в наших школах пользоваться справочниками? А ведь это умение несравненно полезнее, чем помнить формулы наизусть.
Наконец, о равенстве 32 + 42 = 52. Если положительные числа a, b, c обладают тем свойством, что a2+ b2= c2, то, по обратной теореме Пифагора, они представляют собою длины сторон некоторого прямоугольного треугольника; если они к тому же суть числа целые, их называют пифагоровыми. Вот ещё пример пифагоровой тройки: 5, 12, 13. Возникает естественный вопрос, а что будет, если в соотношении, определяющем пифагоровы числа, заменить возведение в квадрат на возведение в куб, в четвёртую, пятую и так далее степень? Можно ли привести пример таких целых положительных чисел a, b, c, чтобы выполнялось равенство a3+ b3= c3, или равенство a4+ b4= c4, или a5+ b5= c5 и т. п.? Любую тройку целых положительных чисел, для которых выполняется одно из указанных равенств, условимся называть тройкой Ферма.