Аппаратные интерфейсы ПК. Энциклопедия
Шрифт:
Для блокированных (спаренных) телефонов одна двухпроводная линия от АТС обслуживает двух абонентов с разными номерами поочередно. Для разделения линий используется пассивное устройство– блокиратор — два однополупериодных выпрямителя сигнала с линии от АТС. Здесь АТС задействует положительную полярность сигнала для работы с абонентом 1 и отрицательную — для работы с абонентом 2. Когда приходит внешний вызов, его сигнал станция посылает в полярности, соответствующей вызываемому абоненту. Для опроса состояния (поднята/опущена трубка) АТС чередует полярность опрашивающего напряжения с низкой частотой (этот рокот можно услышать, если в момент плавного снятия трубки контакты включения трубки сработают раньше, чем замыкающие контакты нагрузочного резистора). Как только обнаружена снятая трубка у одного из абонентов, станция останавливает чередование опроса на «его» полярности и работает вышеописанная сигнализация. Для спаривания телефонов применяют и частотное разделение: для одного из абонентов сигнал передается на высокой частоте (с модуляцией). Блокирование (спаривание) телефонов позволяет экономить
Для автоматического определения номера (АОН) вызывающего абонента имеется специальная система сигнализации, поддерживаемая большинством отечественных АТС. Ее работу иллюстрирует диаграмма, показанная на рис. 10.7. Когда телефон с АОН получает вызывной сигнал, он до подключения разговорного узла включает цепь, на которой падает напряжение около 24 В, и через 250–275 мс в линию посылает тональный сигнал «запрос». Этот сигнал должен иметь частоту 500 Гц и длительность 100 мс. В ответ на этот сигнал АТС передает несколько раз повторяющийся пакет из десяти двухчастотных посылок, в котором сообщается категория и 7-значный номер вызывающего абонента. Каждая посылка продолжается 40 мс и содержит две из шести возможных тональных частот (700, 900, 1100, 1300, 1500 и 1700 Гц). Таким образом кодируются цифры 0–9 и служебные символы «начало» и «повтор». Символ «начало» обрамляет пакет, символ «повтор» используется, если последующая цифра повторяет предыдущую (чтобы облегчить выделение посылок). После приема ответа АОН может имитировать (для вызывающего абонента) длинные гудки, в это время вызываемый абонент может решить, снимать трубку или нет, включить автоответчик и т. п. На время разговора (или работы автоответчика) включается РУ с обычным сопротивлением, и напряжение падает до 5-15 В. Отбой выполняется обычным образом. Для зарубежных АТС аналогом услуги АОН (которая первоначально не предназначалась для широкого круга пользователей) является услуга идентификации вызывающего абонента (Caller Id), предоставляемая только цифровыми станциями. Она работает по совсем иному протоколу.
Рис. 10.7. Последовательность сигналов при автоматическом определении номера
Современные кнопочные телефоны, а также модемы и факс-модемы отрабатывают телефонную сигнализацию по вышеописанной схеме. Коммутирующими элементами у них могут быть электронные ключи или малогабаритные реле (их щелчки на модемах хорошо слышны при работе), вместо электромагнитного звонка применяется электронный генератор сигнала, традиционный угольный микрофон может заменяться электретным с усилителем. Схемотехнически они могут заметно отличаться от вышеприведенной схемы, но всяко должны обеспечивать сопротивление постоянному току при повешенной трубке (и в момент прерывания при наборе номера) не менее 250 кОм, во время набора номера (в фазе замыкания) — не более 50 Ом.
Параметры сигналов зарубежных АТС и выпускаемых для них телефонов несколько отличаются от отечественных: номинальное напряжение — 40 В, вызывные импульсы — до 90 В, уровень звукового сигнала при разговоре ниже. Из-за этих различий, например, абонент отечественного телефона хуже слышит абонента импортного телефона, а абонент импортного телефона слышит первого лучше. Из-за слишком большой амплитуды вызывного напряжения (на некоторых АТС она может достигать 200 В) аппараты могут выходить из строя. Защита линии от перенапряжения с помощью стабилитронов или варисторов в этом случае не позволит дозвониться до «защищенного» абонента: при большой амплитуде импульсов ток потечет через ограничитель и станция зафиксирует это как снятие трубки. Далее подается обычное напряжение (ниже ограничения), ток прекращается и станция фиксирует отбой. Выходом в такой ситуации может быть применение схемы «стабилизатора вызывного напряжения» (рис. 10.8), с помощью которой автор сумел подключить модем с защитой от перенапряжений к линии от «ретивой» АТС. Любопытным оказался факт, что ограничитель напряжения был спрятан в кабеле, прилагавшемся к модему (с виду — обычный шнур с вилками RJ-11). Схема не претендует на оптимальность решения, но работает.
Рис. 10.8. Стабилизатор вызывного напряжения
На линиях отечественных АТС рекомендуется использовать оборудование, специально адаптированное для нашей страны (и сертифицированное Министерством связи).
Глава 11
Вспомогательные последовательные интерфейсы и шины
В этой главе рассматриваются интерфейсы и шины, предназначенные, в основном, для «внутреннего использования». В этом качестве I²C используется для идентификации модулей DIMM, информация о которых хранится в маленьких микросхемах энергонезависимой памяти. В ряде современных системных плат присутствует шина SMBus, основанная на том же интерфейсе I²C. Эта шина используется для считывания идентификационной информации модулей памяти, по ней же осуществляется доступ к памяти идентификаторов и средствам термоконтроля процессоров Xeon. Она же входит и в состав сигналов слота CNR (слот подключения расширений аудиокодека и телекоммуникаций) для конфигурирования аудио- и коммуникационного оборудования. По интерфейсу I²C, входящему в интерфейс VESA DDC1/2B, современные мониторы обмениваются конфигурационной и управляющей информацией с графическим адаптером (а через него и с центральным процессором). Канал DDC входит в обычный 15-контактный аналоговый
Интерфейс SMI в явном виде в ПК встречается нечасто, он «родом» из коммуникационной аппаратуры Fast Ethernet, где широко используется для управления модулями физического уровня (в том числе и сменными модулями концентраторов).
Интерфейсы SPI и JTAG встречаются в аппаратуре, основанной на микроконтроллерах и конфигурируемой логике, — наиболее часто они используются для загрузки конфигурационной информации (и кодов программ). Для тех же целей применяются и другие трехпроводные и четырехпроводные интерфейсы, но здесь мы ограничимся лишь упоминанием об их существовании.
11.1. Последовательные шины на базе I²C
Интерфейс последовательной шины I²C, введенной фирмой Philips как простое и дешевое средство сопряжения микросхем бытовой электроники, стал фактическим промышленным стандартом для устройств различного назначения. Он очень удобен для обмена небольшими объемами данных, например, для конфигурации различных устройств. Спецификация шины I²C определяет протокол двусторонней передачи данных по двум сигнальным линиям. Приложения этого протокола могут быть самыми разнообразными, информационная «начинка» зависит от конкретных применений. На основе интерфейса I²C построены шины ACCESS.bus и SMBus, рассмотренные ниже (о работе интерфейса I²C с микросхемами памяти см. п. 7.3.3).
11.1.1. Шина I²C
Шина Inter IC Bus (шина соединения микросхем), или, кратко, I²C, — синхронная последовательная шина, обеспечивающая двустороннюю передачу данных между подключенными устройствами. Шина ориентирована на 8-битные передачи. Передача данных может быть как одноадресной, к выбранному устройству, так и широковещательной. Уровни сигналов — стандартные, совместимые с широко распространенной логикой ТТЛ, КМОП, N-МОП, как с традиционным питанием +5 В, так и с низковольтным (3,3 В и ниже). Микросхемы с интерфейсом I²C, как правило, имеют аппаратную поддержку протокольных функций. Протокол позволяет взаимодействовать на одной шине устройствам с различным быстродействием интерфейса. Требования к временным параметрам сигналов весьма свободные, так что на компьютерах и микроконтроллерах, не имеющих аппаратной поддержки шины I²C, ее протокол может быть реализован даже чисто программно.
Шина I²C используется уже давно, ее официальная версия 1.0 вышла в 1992 г. По сравнению с предшествующими (черновыми) версиями, здесь отсутствует (как запутанная и неиспользуемая) возможность программного задания адреса ведомого устройства. Также отсутствует низкоскоростной режим (Low speed), являющийся частным случаем стандартного режима — Standard Mode (S) — со скоростью 0-100 Кбит/с. В версии 1.0 появились определение быстрого режима — Fast Mode (F) — со скоростью 0-400 Кбит/с и связанные с ним изменения требований к форме сигнала и фильтрации помех. Также здесь веден режим 10-битной адресации устройств. Версия 2.0 вышла в 1998 г., когда интерфейс I²C стал фактически промышленным стандартом, использующимся в большом числе различных ИС. Здесь появился новый высокоскоростной режим — High speed (Hs), — в котором скорость передачи может достигать 3,4 Мбит/с. Прежние режимы F и S логически работают одинаково, и для них используют обобщенное обозначение F/S. В этой версии пересмотрены требования к уровням и форме сигналов с учетом высоких скоростей и возможности подключения низковольтных устройств с питанием 2 В и ниже. В версии 2.1 (2000 г.) уточнены некоторые моменты, касающиеся временных диаграмм в режиме Hs. Приведенная здесь информация основана на спецификации шины I²C версии 2.1, доступной на сайте www.philips.com. Параметры интерфейсных сигналов приводятся в п. 11.1.4, где они сопоставляются с требованиями SMBus и ACCESS.Bus.
Интерфейс I²C использует две сигнальные линии: данных