Чтение онлайн

на главную - закладки

Жанры

Астероидно-кометная опасность: вчера, сегодня, завтра
Шрифт:

Сделанное выше допущение о независимости случайных ошибок элементов эквивалентно допущению, что все недиагональные элементы матрицы ковариаций равны нулю. В том случае, если это допущение неверно, плотность вероятности многомерного нормального распределения будет иметь более сложный вид по сравнению с (7.7). В показателе экспоненты будет присутствовать сумма не только квадратов, но и смешанных членов вида (xi — xi0)(xj — xj0) с коэффициентами, зависящими от недиагональных элементов матрицы ковариаций (коэффициентов корреляции). Приравнивание суммы в показателе экспоненты к положительной постоянной

дает уравнение эллипсоида равной плотности вероятности, но в этом случае ориентация главных осей эллипсоида не совпадает с ориентацией координатных осей. Путем поворота координатных осей уравнение эллипсоида может быть приведено к виду (7.8), в котором отсутствуют смешанные члены.

Корреляционные матрицы, определяющие погрешности элементов и корреляционные связи между ними, находят важное применение при определении погрешностей различных функций этих элементов. Этот вопрос еще будет обсуждаться в следующих параграфах.

Подводя итог, важно обратить внимание на то, что элементы истинной орбиты тела остаются неизвестными. Любая точка внутри доверительного эллипсоида представляет некоторую орбиту, совместимую с имеющимися наблюдениями. Однако вероятность того, что реальная орбита находится в малой окрестности номинального решения, является максимальной по сравнению с другими возможными решениями.

Отметим, что до сих пор мы рассматривали все наблюдения как имеющие одинаковую точность. На практике приходится определять элементы орбиты на основе рядов наблюдений, выполненных с различными точностями (имеющими различные среднеквадратичные ошибки 1, 2…, n). В таких случаях вводят понятие веса наблюдения, определяя его как

где 0 — произвольное положительное число.

Решение системы условных уравнений в таком случае ищут исходя из обобщенного принципа Лежандра: решение системы должно минимизировать взвешенную сумму квадратов остающихся невязок:

Из этого требования вытекает правило преобразования системы условных уравнений и ее решения: каждое условное уравнение должно быть умножено на корень квадратный из веса соответствующего наблюдения. После этой операции (так называемого приведения к равноточным наблюдениям) система решается так же, как в случае наблюдений, имеющих одну и ту же среднюю ошибку.

7.2. Нелинейный характер распространения ошибок начальных данных. Поиск потенциально опасных сближений астероидов с Землей и оценка вероятности столкновений

После того как номинальная орбита астероида определена, появляется возможность предвычислить его движение в предстоящий период времени и определить, угрожает ли Земле столкновение с ним в обозримом будущем. В зависимости от точности найденной орбиты такие расчеты желательно выполнять для всех АСЗ на интервалах от нескольких лет до нескольких десятков лет, а иногда и до нескольких сотен лет. Прогнозирование движения выполняется методом численного интегрирования уравнений движения, в которых учитываются члены, обусловленные притяжением больших планет и наиболее массивных астероидов (в случаях, требующих особой точности, иногда учитываются возмущения от трехсот наиболее массивных астероидов, см. раздел 7.3). В ходе численного интегрирования фиксируются моменты тесных сближений с Землей и другими большими планетами, которые могут заметным образом трансформировать орбиту тела и тем самым оказать влияние на ее последующие сближения

с Землей.

Поскольку столкновения достаточно крупных тел с Землей — весьма редкие события, то при прогнозировании движения тела по номинальной орбите столкновения с Землей, как правило, не обнаруживаются. Нужно, однако, иметь в виду, что номинальная орбита является лишь одной из бесчисленного количества других возможных орбит, элементы которых более или менее близки к элементам номинальной орбиты. Фактическая орбита тела, которая нам не известна, находится где-то внутри области, ограниченной доверительным эллипсоидом (см. раздел 7.1).

Аналогичное представление об области неопределенности начальных условий движения справедливо и в том случае, если рассматривать точки не в пространстве элементов орбит, а в пространстве начальных значений прямоугольных координат и скоростей тел, что имеет несколько большую наглядность.

По мере увеличения числа использованных наблюдений и расширения покрываемого ими временного интервала, ошибки определения элементов, вообще говоря, уменьшаются, а вместе с тем сокращаются и полуоси доверительного эллипсоида. Его центр, соответствующий новому номинальному решению, при этом также несколько смещается в пространстве.

Каждая точка внутри доверительного эллипсоида соответствует некоторой возможной орбите. Тело на возможной орбите мы будем называть виртуальным (возможным) астероидом [Milani et al., 2002].

Если внутри доверительного эллипсоида случайным образом выбрать большое число виртуальных астероидов и следить за их движением на некотором интервале времени, то можно наблюдать, как с течением времени изменяются форма и размеры области пространства, в которой в данный момент заключены виртуальные астероиды. Во всех случаях, с которыми приходится иметь дело на практике, область, первоначально занятая доверительным эллипсоидом, постепенно расширяется и вытягивается вдоль номинальной орбиты тела. Причиной этого являются небольшие различия элементов орбит виртуальных астероидов, причем различие в среднем движении вызывает пропорциональные времени расхождения в средней аномалии, значение которой определяет положение тела на орбите. В результате граница области, занятой виртуальными астероидами, постепенно превращается в очень вытянутый эллипсоид, который можно представить в виде трубки более или менее постоянной ширины, окружающей номинальную орбиту. С течением времени длина трубки может достичь тысяч и миллионов километров и даже превзойти длину орбиты тела.

Большие искажения области пространства, занятой виртуальными астероидами, обусловливают их тесные сближения с Землей или другими планетами. Орбиты с близкими начальными условиями движения по прошествии большого интервала времени могут оказаться весьма далекими друг от друга или, напротив, скрещивающимися друг с другом, что может быть квалифицировано как наложение области возможных движений самой на себя. Во всех этих случаях принято говорить о нарушении линейности задачи. Математически это означает, что приращение некоторой функции начальных значений параметров существенно отличается от ее первого дифференциала и при ее вычислении нельзя пренебрегать членами с дифференциалами высших порядков.

Решение задачи об оценке вероятности встречи астероида с Землей мы рассмотрим, следуя в целом линии, намеченной в работах [Milani et al., 2000; 2002]. На первом этапе будем предполагать, что задача имеет линейный характер, отложив на потом более сложные случаи. Фактически это равносильно предположению, что область пространства, занятая виртуальными астероидами в окрестности сближения номинальной орбиты с Землей, представляет собой эллипсоид, хотя его размеры и форма (вытянутость) отличаются от размера и формы доверительного эллипсоида в начальный момент времени.

Поделиться:
Популярные книги

Неудержимый. Книга VIII

Боярский Андрей
8. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
6.00
рейтинг книги
Неудержимый. Книга VIII

Наследник с Меткой Охотника

Тарс Элиан
1. Десять Принцев Российской Империи
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Наследник с Меткой Охотника

Волк 2: Лихие 90-е

Киров Никита
2. Волков
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Волк 2: Лихие 90-е

Наследница Драконов

Суббота Светлана
2. Наследница Драконов
Любовные романы:
современные любовные романы
любовно-фантастические романы
6.81
рейтинг книги
Наследница Драконов

Я – Орк. Том 4

Лисицин Евгений
4. Я — Орк
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Я – Орк. Том 4

Бывшая жена драконьего военачальника

Найт Алекс
2. Мир Разлома
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Бывшая жена драконьего военачальника

Мимик нового Мира 4

Северный Лис
3. Мимик!
Фантастика:
юмористическая фантастика
постапокалипсис
рпг
5.00
рейтинг книги
Мимик нового Мира 4

Восход. Солнцев. Книга X

Скабер Артемий
10. Голос Бога
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Восход. Солнцев. Книга X

Проводник

Кораблев Родион
2. Другая сторона
Фантастика:
боевая фантастика
рпг
7.41
рейтинг книги
Проводник

Польская партия

Ланцов Михаил Алексеевич
3. Фрунзе
Фантастика:
попаданцы
альтернативная история
5.25
рейтинг книги
Польская партия

Последний Паладин. Том 2

Саваровский Роман
2. Путь Паладина
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Последний Паладин. Том 2

Черный Маг Императора 5

Герда Александр
5. Черный маг императора
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Черный Маг Императора 5

Провинциал. Книга 2

Лопарев Игорь Викторович
2. Провинциал
Фантастика:
космическая фантастика
рпг
аниме
5.00
рейтинг книги
Провинциал. Книга 2

Огненный князь 6

Машуков Тимур
6. Багряный восход
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Огненный князь 6