Атмосфера должна быть чистой. Применение статистических методов при аттестации источников эмиссии и оценке качества атмосферного воздуха
Шрифт:
Кроме того, метод перебора не дает гарантии «хорошей» оценки экстремума концентрации, так как на практике приходится иметь дело с выборками ограниченного объема, то есть с ситуациями, когда действительное число измерений концентрации за контрольный период времени Т = 1 год, гораздо меньше соответствующего объема генеральной совокупности n N. Если же промежуток времени между отдельными измерениями t = 0, то метод перебора оправдан, но не позволяет, все-таки, исключить ошибочные и «выскакивающие», то есть не принадлежащие данной статистической совокупности значения.
Таким образом, во всех случаях целесообразно находить экстремальные значения при помощи какого-либо алгоритма.
У одномерной выборки, состоящей из (n) значений, всегда имеются, по крайней мере, два конечных и однозначно определяемых экстремальных значения и также конечная широта, являющаяся разностью между этими значениями. На первый взгляд кажется, что нахождение экстремума совсем простая задача, достаточно лишь расположить (n) выборочных значений в порядке возрастания их величины и рассмотреть значения, стоящие на i – ом месте от начала или конца ( в дальнейшем нас будет интересовать i – е верхнее значение), тогда при i=n получаются экстремальные значения. На самом деле экстремальные значения, как и любая порядковая статистика, обладают выборочной неустойчивостью и определяются свойствами генеральной совокупности, поэтому правильнее их находить по выборке при помощи каких-либо специальных алгоритмов.
Как известно [40], порядковые статистики представляют собой зависимые случайные величины (даже если исходная совокупность независимая) и поэтому описывается некоторым совместным распределением. Если функция распределения случайной переменной в генеральной совокупности и функции плотности f(x) непрерывны, то в выборке объемом (n) функция плотности распределения i-й порядковой статистики выражаются формулой:
(2.19.)
Математическое ожидание i – й порядковой статистики дается выражением:
(2.20.)
Где – переменная интегрирования.
Дисперсия i – й порядковой статистики определяется из выражения:
Где
(2.21.)
Ковариация между i-й и j-й порядковыми статистиками (I < j) вычисляется по формуле:
(2.22.)
Где
Нормированный коэффициент корреляции:
(2.23.)
Очевидно, что эти формулы очень сложны и малопригодны для аналитического исследования. Что касается распределения наибольшего значения Хn , то событие
Xn <= X эквивалентно пересечению событий
Следовательно,
(2.24.)
Тогда, (2.25.)
(2.26.)
Последнее выражение позволяет оценить Xmax если есть информация о распределении генеральной совокупности. Для нормальной или логнормальной функции распределения, оценки математических ожиданий i – х порядковых статистик могут быть выполнены только численным интегрированием на ЭВМ.
Если известны распределение и плотность генеральной
(2.27.)
Например, для стандартного нормального распределения :
(2.28.)
Из последнего выражения видно, что оценки вида Xmax=+3 является хорошей оценкой экстремального значения по выборке. Аналогичные оценки можно получить и для логнормального распределения. Какую же величину вероятности следует задавать для оценки экстремального значения? Однозначных рекомендаций нет. Используют уровень 2, то есть 95% и 3, то есть 99,7%. Задают и более жесткие границы, например, для частоты экстремального значения в работе [35] рекомендуется уровень 0,01%.
Конечно, одни нормы более «мягкие», другие более «жесткие», но на практике можно было бы ограничиться любыми уровнями, обеспечивающими вероятность не превышения 95%, главным является понимание того, что любая граница допуска может быть задана с определенной вероятностью ее не превышения. В данной работе предполагается детально исследовать этот вопрос и выдать конкретные рекомендации для практического использования.
Существует еще один аспект проблемы оценки санитарно-гигиенической обстановки, который связан со стационарностью рассматриваемых случайных функций (случайных процессов).
Этот вопрос имеет принципиальное значение, прежде всего для возможности применения эргодической гипотезы (общей эргодической теоремы – предельной теоремы для среднего значения случайных функций) [42]. В общем случае математическое ожидание и дисперсия случайной функции сами являются функциями времени. Если эти функции представляют собой долгопериодные регулярные колебания (как в случае метеорологических рядов), то они могут быть выявлены методами гармонического анализа и использованы для прогноза. В случае же нерегулярных колебаний, как возможность диагностики, так и прогноза становится проблематичной.
Задача существенно упрощается для стационарных случайных процессов. Для таких процессов:
(2.29.)
для любых 0<= ti <= T .
Среднее по времени для каждой реализации определяется как:
(2.30.)
Если для любого k MXk=const, то процесс X(t) называется эргодическим, при этом его корреляционная функция зависит только от времени. Именно свойство эргодичности стационарных случайных процессов позволяет выполнить все необходимые оценки на основании данных одной реализации [ 8 ].
Какие же характеристики случайной функции X(t) могут быть получены при измерении концентрации ЗВ в источнике выбросов (эмиссий) или на стационарном посту наблюдения в приземном слое атмосферы? Например, в течение каждого часа отбирается проба для оценки максимально разовой концентрации ЗВ в течение суток Т, то есть 0 <= tj
Конец ознакомительного фрагмента.