Чтение онлайн

на главную - закладки

Жанры

Атмосфера должна быть чистой. Применение статистических методов при аттестации источников эмиссии и оценке качества атмосферного воздуха
Шрифт:

Собственно оценка вероятности превышения осредненной за соответствующий период времени (’) концентрацией ингредиента нормируемых уровней за контрольный период (Т) и является оценкой санитарно-гигиенической обстановки. Правильная с методической и формальной точки зрения процедура сравнения характеристик загрязнения и контрольных уровней представляет собой определенную проблему и составляет одну из целей данной работы.

Анализ данных о выбросах и сбросах загрязняющих веществ промышленными предприятиями, а также многочисленные исследования временной структуры концентрации ЗВ в атмосферном воздухе [19, 20, 21, 22, 23] показали, что концентрации являются случайными функциями времени Х(t) (рис. 2). Значения величины Х(t) в каждый момент времени (t) не является однозначно

определенным, как в случае детерминированных систем, а зависит от случайных факторов, которые влияли на систему до момента времени (t).

Случайный характер результатов наблюдений любого явления может быть обусловлен или физической природой этого явления или условиями его наблюдения и регистрации. Применительно к контролю эмиссий, а также качеству объектов окружающей среды имеют место оба этих фактора.

Во-первых, случайными являются некоторые компоненты ошибок измерений (отбор проб, их транспортировка, собственно анализ), во-вторых, случайным является характер турбулентности атмосферы и метеорологических элементов, что приводит к пульсации скорости, температуры, давления и в том числе концентрации скалярной примеси (концентрации ЗВ) в точке наблюдения [ 24 ] даже, если она консервативная и пассивная, в – третьих при генерации выбросов ЗВ (газов, паров, аэрозолей) или сбросов в различных технологических процессах и аппаратах, нельзя считать известными все факторы, регулирующие мгновенные значения концентрации конкретных ингредиентов. Аналогично, случайный характер имеют метеорологические процессы, регулирующие формирование полей концентрации (ЗВ) в атмосферном воздухе. Поэтому результаты измерения функции Х(t), представленные в дискретной форме следует рассматривать как реализацию {Xi(ti)} некоторого случайного процесса (t).

Применение случайных моделей требует использования статистических методов оценки параметров случайных величин. Кроме того, существенным моментом является определение именно тех параметров случайных функций, описывающих изменения концентрации ЗВ, которые должны быть сопоставлены с контрольными или нормируемыми уровнями при оценке санитарно-гигиенической обстановки.

Следуя сказанному выше, формальное определение одного (разового) измерения концентрации можно представить в виде соотношения:

(2.5.)

Где – измеренное значение концентрации, осредненное за время ;

X(t) – случайная функция, описывающая временную изменчивость «мгновенных» значений концентрации ингредиента в точке измерений;

Q(t) – расходная характеристика зондирующего устройства.

Если контрольным периодом является промежуток Т= t2 – t1, то средние значения за время Т можно определить двумя способами:

1) 

(2.6.)

2) 

(2.7.)

где – число циклов отбора проб ЗВ, (число измерений);

– продолжительность одного цикла измерения;

– промежуток времени между измерениями.

Не трудно показать, что разница между этими двумя определениями и возрастает с увеличением . Это происходит из-за потери информации о процессе X(t). Представления 2.6. и 2.7. чисто формальные, так как вид функции и не известен.

Если все {} рассматривать изолированно, как независимые случайные величины, имеющие одинаковые математические ожидания и дисперсии МХ и S2X, то, как известно, [ 5 ]

, (2.8.)

То есть, среднее арифметическое обладает выборочной неустойчивостью, а соответствующая дисперсия зависит от объема выборки n. Очевидно, что максимальное число измерений n=N за время (Т) может быть определено по формуле:

=0. (2.9.)

Следуя терминологии математической статистики число (N) можно назвать объемом генеральной

совокупности [ 16 ].

Дисперсия среднего арифметического может зависеть от степени связности соответствующих экспериментальных значений {} [25,26]. Наличие связности между членами временных рядов видимо, впервые было рассмотрено Слуцким [ 25 ]. Им же показано, что устойчивость или связность в рядах затрудняет оценки статистических характеристик и требует оценок корреляционных функций. В настоящее время достаточно хорошо изучена связность метеорологических рядов [27,28], соответственно она должна учитываться в анализе данных о загрязнении воздуха [ 29,30 ]. Если концентрация ЗВ Х(t) в любой момент времени (t), определенная как (2.5.), является случайной величиной, то она однозначно определяется своей функцией распределения вероятности или частоты. Частота повторяемости появления тех или иных значений {} из (n) измерений может, например, быть рассчитана по формуле (2.1.).

Каждое загрязняющее атмосферу вещество требует вполне определенного времени экспозиции для того, чтобы проявился определенный эффект воздействия. Например, концентрация порога запаха может быть определена органолептически (organoleptical) человеком в течение 1 – 2 сек [ 34 ]. С другой стороны требуется гораздо большее время экспозиции для окиси углерода (СО), чтобы вызвать определенные эффекты в расстройстве здоровья людей. Растения могут быть повреждены при времени экспозиции менее 1 часа, если концентрация (SO2) или (NO2) достаточно высока. Таким образом, для того, чтобы связать эффекты воздействия загрязнителей атмосферы с их концентрациями, последние должны быть проанализированы как функции времени экспозиции. Это может быть сделано осреднением концентрации за некоторые периоды времени. В работе [35] приводятся зависимости между 8-часовыми уровнями концентрации (СО) в воздухе и уровнями (СО) в крови. Отмечена очень хорошая корреляция процессов. В то же время, отмечено, что 1 – часовые уровни концентрации (СО) являются плохими индикаторами содержания (СО) в крови, так как последние регулируются достаточно медленными процессами сорбции и десорбции.

Частота, с которой данная концентрация ингредиента может быть превышена, определяет частоту с которой может ожидаться определенный эффект воздействия. Таким образом, для того чтобы связать концентрации с их воздействием, данные о качестве воздуха должны быть проанализированы как функции времени осреднения и частоты. Распределения частот данных о загрязнении воздуха (воды) должны обладать одним свойством – они сугубо положительны (все >0). Поэтому функция нормального распределения (2.1.), строго говоря, не может использоваться для интерпретации данных контроля ЗВ.

Долгое время господствовало убеждение, что вполне случайное распределение должно быть строго симметричным и всякую асимметрию считали признаком тенденции к преимущественному появлению односторонних значений и, следовательно, признаком наличия каких-то связей, исключающих случайность. На самом деле это не так. Нетрудно показать, что любая функция случайной переменной, и любая функция распределения может быть преобразована в функцию распределения заданной формы. Нет никаких специальных оснований полагать, что именно тот, а не другой аргумент целиком управляет явлением. Следовательно, изучение частот появления аргумента (Х) может быть с успехом заменено равносильной задачей – изучением частот величины Z=f(X).

Так как значения ПДК для многих ЗВ весьма малы и находятся на границе чувствительности многих методов и приборов, ошибки измерений резко возрастают. Возможность появления больших средних квадратичных отклонений данных измерений, не зависимо от причин их генерирующих, и как следствие появление больших ошибок вычисления средних (больших 100%) приводит к необходимости использования несимметричных доверительных интервалов и несимметричных функций распределения вероятности.

В частности, такие функции должны быть ограничены слева значением Х=0 во избежание появления бессмысленных с физической точки зрения оценок вида:

Поделиться:
Популярные книги

Снегурка для опера Морозова

Бигси Анна
4. Опасная работа
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Снегурка для опера Морозова

(Не)свободные, или Фиктивная жена драконьего военачальника

Найт Алекс
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
(Не)свободные, или Фиктивная жена драконьего военачальника

Архил…? Книга 3

Кожевников Павел
3. Архил...?
Фантастика:
фэнтези
попаданцы
альтернативная история
7.00
рейтинг книги
Архил…? Книга 3

Ну привет, заучка...

Зайцева Мария
Любовные романы:
эро литература
короткие любовные романы
8.30
рейтинг книги
Ну привет, заучка...

Генерал-адмирал. Тетралогия

Злотников Роман Валерьевич
Генерал-адмирал
Фантастика:
альтернативная история
8.71
рейтинг книги
Генерал-адмирал. Тетралогия

Не грози Дубровскому! Том IX

Панарин Антон
9. РОС: Не грози Дубровскому!
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Не грози Дубровскому! Том IX

Убивать чтобы жить 3

Бор Жорж
3. УЧЖ
Фантастика:
героическая фантастика
боевая фантастика
рпг
5.00
рейтинг книги
Убивать чтобы жить 3

Лорд Системы 4

Токсик Саша
4. Лорд Системы
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Лорд Системы 4

Рота Его Величества

Дроздов Анатолий Федорович
Новые герои
Фантастика:
боевая фантастика
8.55
рейтинг книги
Рота Его Величества

Мастер Разума IV

Кронос Александр
4. Мастер Разума
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Мастер Разума IV

Возвышение Меркурия. Книга 13

Кронос Александр
13. Меркурий
Фантастика:
попаданцы
аниме
5.00
рейтинг книги
Возвышение Меркурия. Книга 13

Ученик. Книга третья

Первухин Андрей Евгеньевич
3. Ученик
Фантастика:
фэнтези
7.64
рейтинг книги
Ученик. Книга третья

Кодекс Крови. Книга V

Борзых М.
5. РОС: Кодекс Крови
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Крови. Книга V

Сердце Дракона. Том 11

Клеванский Кирилл Сергеевич
11. Сердце дракона
Фантастика:
фэнтези
героическая фантастика
боевая фантастика
6.50
рейтинг книги
Сердце Дракона. Том 11