Чтение онлайн

на главную

Жанры

Базовый курс по рынку ценных бумаг
Шрифт:

ПРОСТОЙ ПРОЦЕНТ

Таким образом, простой процент начисляется исходя из ставки процента и исходной суммы вне зависимости от накопленного дохода. Такая схема соответствует случаю, когда доход от вклада периодически выплачивается заемщиком и тут же изымается кредитором.

Пример 2

Рассмотрим вложение 1000 рублей на банковский депозит сроком 3 года при ставке 10% годовых при условии, что владелец НЕ снимает в конце каждого года полученные в качестве дохода 10%, а оставляет их на счете с целью реинвестирования по той же процентной

ставке (10%).

Основная

Доход за год,

Снято со

Остаток на счете

Сумма

Годовых

счета по

на конец года

Вклада,

Прошествии

Начало

Года

Года

11 год 1000

1000 х 0,1 = 100

0

1000 + (1000х0,1) =

1000 x (l+0,1) = 1100

22 год 1100

1100 х 0,1= 100

0

1100 + (1100x0,1) =

1100 x (l+0,l) = 1210

33 год 1210

1210 х 0,1 =121

0

1210 + (1210х0,1) =

1210 х (1+0,1) = 1331

По окончании трех лет инвестор получит кроме основной суммы вклада в 1000 рублей еще 331 рубль. Всего 1331 рубль.

Таким образом, если сравнивать условия без инвестирования процента (простой процент) и с учетом инвестирования процента (сложный процент), то результаты инвестирования по второй схеме превосходят результаты инвестирования по первой схеме на 31 рубль. Это произошло по причине реинвестирования процента.

СЛОЖНЫЙ ПРОЦЕНТ

Сложный процент начисляется исходя из ставки процента и суммы, накопленной на счете к началу очередного периода с учетом накопленного дохода. Такая схема соответствует случаю, когда доход от вклада периодически начисляется и выплачивается заемщиком, но не изымается кредитором, а остается у заемщика, увеличивая сумму займа.

Естественно, эта схема подвергает кредитора большему риску, соответственно он получает и большее вознаграждение.

ВОПРОСЫ ДЛЯ САМОПРОВЕРКИ

1. Что такое процент?

2. Какая схема начисления соответствует случаю, когда доход от вклада периодически выплачивается заемщиком и тут же изымается кредитором?

18.2 ИЗМЕНЕНИЕ СТОИМОСТИ ДЕНЕГ ВО ВРЕМЕНИ

При размещении свободных средств в разные ценные бумаги инвестор стремится получить максимальную выгоду. Для того, чтобы выбрать оптимальный способ инвестирования, необходимо сравнить полученные доходы. Однако доходы могут поступать в разное время.

ПРИВЕДЕНИЕ ДЕНЕЖНЫХ ПОСТУПЛЕНИЙ К ОДНОМУ И ТОМУ ЖЕ МОМЕНТУ ВРЕМЕНИ

Естественным способом сравнивать денежные поступления в разные сроки является приведение их к одному и тому же моменту времени.

Как правило, в качестве такого момента выбирают или момент начала инвестиций, или некоторый фиксированный момент в будущем.

ДИСКОНТИРОВАНИЕ и НАРАЩЕНИЕ

Приведение денежных потоков к начальному моменту называется дисконтированием, а к моменту в будущем - наращением.

БУДУЩАЯ СТОИМОСТЬ

В Примере 2 общая сумма денежных средств на счете по окончании третьего года (1331) называется будущей стоимостью 1000

рублей, инвестированных на 3 года; по ставке 10%, начисляемых ежегодно; при условии реинвестирования процента.

ТЕКУЩАЯ СТОИМОСТЬ

Изначальная стоимость инвестиции 1000 рублей называется текущей стоимостью 1331 рубля, которые будут выплачены (или получены) через 3 года; исходя из ставки 10%, начисляемых ежегодно; при условии реинвестирования.

Расчет, как мы помним, производился следующим образом:

1000 х (1 + 0,1) х (1 + 0,1) х (1 + 0,1) = 1000 х (1,1)3

При начислении сложного процента мы находим будущую стоимость путем умножения текущей стоимости на (1+ ставка процента в периоде начисления в долях единицы) столько раз, сколько начислялся процент. Теперь мы можем вывести формулу для расчета будущей стоимости денег, инвестированных на определенный срок под определенный процент с условием реинвестирования процента.

Формула для расчета по схеме сложного процента имеет следующий вид:

FV = PV х (1 + r)n, (3)

где

FV - будущая стоимость (future value),

PV - текущая стоимость (первоначальная стоимость на момент инвестирования = основная сумма вклада при первоначальном инвестировании) (present value),

r - ставка процента в периоде начисления в долях единицы (rate),

n - число периодов начисления.

КОЭФФИЦИЕНТ НАРАЩЕНИЯ

Выражение (1 + r)n называется коэффициентом наращения.

Расчет будущей стоимости при использовании формулы сложного процента называется наращением.

Расчет будущей стоимости в Примере 1, как мы помним, производился следующим образом:

1000 + 1000 х 0,1 +1000 х 0,1+1000 х 0,1 = 1000 х (1+0,1 х 3)

При начислении простого процента мы находим будущую стоимость путем умножения текущей стоимости на (1+ ставка процента в периоде начисления в долях единицы, умноженная на количество периодов начисления).

Формула для расчета по схеме простого процента имеет следующий вид:

FV = PV х (1 + n r), (4)

где

FV - будущая стоимость,

PV - текущая стоимость (первоначальная стоимость на момент инвестирования = основная сумма вклада при первоначальном инвестировании),

r - ставка процента в периоде начисления в долях единицы,

n- число периодов начисления.

В случае одного периода (n = 1) формулы (3) и (4) совпадают, т. к. в случае одного временного интервала реинвестирования не происходит и условия заимствования фактически совпадают:

FV = PV х (1+г)

Дисконтирование - это расчет, обратный наращению. При дисконтировании мы узнаем, сколько сейчас (в момент расчета) стоит известная в будущем стоимость денег. Этот пересчет к настоящему моменту позволит сравнивать разные суммы в разные времена. Таким образом, при дисконтировании мы находим текущую стоимость путем деления известной будущей стоимости на (1 + ставка процента) столько раз, на сколько раз начисляется процент.

Поделиться:
Популярные книги

Повелитель механического легиона. Том VI

Лисицин Евгений
6. Повелитель механического легиона
Фантастика:
технофэнтези
аниме
фэнтези
5.00
рейтинг книги
Повелитель механического легиона. Том VI

Ваше Сиятельство 6

Моури Эрли
6. Ваше Сиятельство
Фантастика:
попаданцы
аниме
5.00
рейтинг книги
Ваше Сиятельство 6

Имя нам Легион. Том 5

Дорничев Дмитрий
5. Меж двух миров
Фантастика:
боевая фантастика
рпг
аниме
5.00
рейтинг книги
Имя нам Легион. Том 5

Начальник милиции. Книга 4

Дамиров Рафаэль
4. Начальник милиции
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Начальник милиции. Книга 4

Полководец поневоле

Распопов Дмитрий Викторович
3. Фараон
Фантастика:
попаданцы
5.00
рейтинг книги
Полководец поневоле

Я же бать, или Как найти мать

Юнина Наталья
Любовные романы:
современные любовные романы
6.44
рейтинг книги
Я же бать, или Как найти мать

Маршал Советского Союза. Трилогия

Ланцов Михаил Алексеевич
Маршал Советского Союза
Фантастика:
альтернативная история
8.37
рейтинг книги
Маршал Советского Союза. Трилогия

Боги, пиво и дурак. Том 4

Горина Юлия Николаевна
4. Боги, пиво и дурак
Фантастика:
фэнтези
героическая фантастика
попаданцы
5.00
рейтинг книги
Боги, пиво и дурак. Том 4

Беглец

Бубела Олег Николаевич
1. Совсем не герой
Фантастика:
фэнтези
попаданцы
8.94
рейтинг книги
Беглец

Возвращение Безумного Бога 3

Тесленок Кирилл Геннадьевич
3. Возвращение Безумного Бога
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Возвращение Безумного Бога 3

Идеальный мир для Лекаря 9

Сапфир Олег
9. Лекарь
Фантастика:
боевая фантастика
юмористическое фэнтези
6.00
рейтинг книги
Идеальный мир для Лекаря 9

Темный Лекарь 7

Токсик Саша
7. Темный Лекарь
Фантастика:
попаданцы
аниме
фэнтези
5.75
рейтинг книги
Темный Лекарь 7

Александр Агренев. Трилогия

Кулаков Алексей Иванович
Александр Агренев
Фантастика:
альтернативная история
9.17
рейтинг книги
Александр Агренев. Трилогия

Курсант: Назад в СССР 13

Дамиров Рафаэль
13. Курсант
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Курсант: Назад в СССР 13