Чтение онлайн

на главную

Жанры

Бегство от удивлений
Шрифт:

В малых масштабах подмечена неразличимость инерции и тяжести (Людмила, обманутая Черномором, и т. д.). Отсюда провозглашен принцип эквивалентности инерции и тяготения. Далее выяснено, что в поле сил инерции происходит деформация времени и пространства (споры болельщиков на сотой Олимпиаде). По принципу эквивалентности последовал вывод: в поле тяжести тоже происходит деформация времени и пространства (казус с механиком Клио).

Так сделан немаловажный шаг — отыскан физический признак, присущий в равной мере силам инерции и тяготению: тут и там для

внешнего наблюдателя неизбежно изменение времени и пространства.

Пока это заключение законно только в локальных масштабах, где безоговорочно справедлив принцип эквивалентности, то есть для ограниченных объемов или малых промежутков времени (вспомните возражение Маленького Принца). Для планеты в целом такой вывод сделать нельзя, потому что Земля имеет центр масс. Полное земное тяготение, благодаря его центральности, сразу везде и надолго невозможно повторить неинерциальным движением или, наоборот, уничтожить его свободным падением системы.

Вышеизложенное известно из предыдущих глав.

А вот новое.

Выдвигается гипотеза: раз в локальных, местных явлениях тяготение, сведенное к инерции, изменяет пространство и время, то и в крупных масштабах, где сведение невозможно, должна тем не менее происходить какая-то деформация пространства и времени.

Гипотеза эта напрашивается сама собой. Ведь полное тяготение Земли складывается из сил тяготения, исходящих от ее маленьких частей. В каждой части пространство и время изменяются, значит, и во всех частях вместе — тоже.

Из сугубо локальных явлений извлечено, таким образом, заключение совершенно универсальное: наша планета всей своей массой деформирует пространство и время.

И Солнце, и любая звезда, и любая галактика.

Всякая масса вещества обязана обладать поразительной способностью — способностью искривлять мир.

Что же это такое — искривлять мир?

Дабы легче постичь это, еще раз сосредоточьтесь и следующие три главы прочтите с усиленным вниманием.

Глава 21. ВДОЛЬ ПОВЕРХНОСТИ

Кривые дрова

Геометрия — самая древняя в обширной семье математических наук. И чуть ли не самая мудрая. Учителя единодушно признают ее лучшим пробным камнем математических способностей — она очень глубока по мысли, изящна, безупречно стройна.

Юный Эйнштейн, когда ему в руки попалась тоненькая геометрическая книжечка, был восхищенно удивлен открывшимся волшебством логического творчества: шаг за шагом из простейших постулатов вырастала гармония лемм и теорем, все более запутанных, тонких, подчас неожиданных. Великий физик назвал эту книжечку в числе отправных пунктов своего марафонского бега от удивлений.

Да, геометрия достойна высших похвал. Может быть, даже поэм и од.

Жаль, что их, кажется, еще не успели сочинить.

Зато на геометрические темы придумано порядочно поговорок и пословиц. Есть даже анекдоты.

Мне почему-то страшно нравится тот, где некий

машинист на паровозе кричит кочегару:

— Эй, кочегар, кидай в топку кривые дрова! Въезжаем на поворот!

Эти фразы радуют своим несказанным идиотизмом.

Между тем изощренный физик-теоретик сумеет дать им кое-какое разумное истолкование. Чтобы уяснить это, нам придется заглянуть в геометрические первоосновы. Заодно мы поймем, что такое кривизна пространства.

Ножницы, глобус, седло

Вот вопрос: «прямое» и «кривое» — как отличить одно от другого? И что такое вообще кривизна и прямизна?

Прямой хочется назвать линию, которая проложена по кратчайшему расстоянию между двумя точками, а кривой — ту, что обходит прямую. Не зря ведь говорят: «объехать по кривой». Поэтому понятие прямизны тесно связано с понятием расстояния.

Теперь поймите главное: никакое расстояние не существует само по себе. Оно всегда отмеривается по чему-то конкретному — по дороге, по тетрадной странице или горному склону, либо, скажем, по световому лучу или по веревке, туго натянутой в пустоте.

Геометры говорят абстрактно и обобщенно: расстояния отмериваются по линиям, по поверхностям, в пространстве. Физики, соглашаясь с геометрами, помнят, однако, что все эти геометрические термины отражают реальные свойства нашего мира.

Кроме того, физик вкладывает свое определенное содержание в слово «отмеривать». Он помнит, что любое измерение требует не только математической корректности. Необходимы еще соответствующие приборы— линейки и часы.

Да, именно часы — ведь никакое измерение нельзя даже мысленно исполнить мгновенно, это мы с вами хорошо уяснили в десятой главе, когда рассуждали о предельности скорости света и других особенностях эйнштейновского толкования природы.

Таким образом, определение расстояний, как и всякий измерительный процесс, — совершенно очевидное физическое исследование. Тут геометрия зримо оборачивается физикой, физикой пространственных движений.

Пока, впрочем, забудем о часах. Допустим, что мы умеем измерять длины мгновенно. Это разрешено в физике медленных по сравнению со светом движений, в физике Ньютона. И поставим первую простенькую задачку.

Пусть даны две точки А и В — концы разведенных и крепко свинченных ножниц. И пусть расстояние между ними нужно определить по поверхности. Сразу задаем вопрос: по какой поверхности?

Ну, сперва по шаровой.

Хорошо. Подставим под ножницы глобус. Кратчайшее расстояние на его сфере физик проведет вдоль нити, натянутой между A и В по шаровой поверхности. Оно отмеряется, очевидно, не прямой линией, а кривой — дугой большого круга.

Далее. Посадим наши точки на какую-нибудь седловидную поверхность. Расстояние, проложенное туго натянутой ниткой, будет пройдено по другой кривой линии — гиперболе.

Если же концы ножниц приложить к поверхности письменного стола, то расстояние между ними отмерится по линии, которую мы привыкли называть прямой.

Поделиться:
Популярные книги

Идеальный мир для Лекаря 6

Сапфир Олег
6. Лекарь
Фантастика:
фэнтези
юмористическая фантастика
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 6

Санек 2

Седой Василий
2. Санек
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Санек 2

Первый среди равных

Бор Жорж
1. Первый среди Равных
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Первый среди равных

Соль этого лета

Рам Янка
1. Самбисты
Любовные романы:
современные любовные романы
6.00
рейтинг книги
Соль этого лета

Не отпускаю

Шагаева Наталья
Любовные романы:
современные любовные романы
эро литература
8.44
рейтинг книги
Не отпускаю

Вечный. Книга VI

Рокотов Алексей
6. Вечный
Фантастика:
рпг
фэнтези
5.00
рейтинг книги
Вечный. Книга VI

Идеальный мир для Социопата 7

Сапфир Олег
7. Социопат
Фантастика:
боевая фантастика
6.22
рейтинг книги
Идеальный мир для Социопата 7

Вираж бытия

Ланцов Михаил Алексеевич
1. Фрунзе
Фантастика:
героическая фантастика
попаданцы
альтернативная история
6.86
рейтинг книги
Вираж бытия

Жена проклятого некроманта

Рахманова Диана
Фантастика:
фэнтези
6.60
рейтинг книги
Жена проклятого некроманта

Солдат Империи

Земляной Андрей Борисович
1. Страж
Фантастика:
попаданцы
альтернативная история
6.67
рейтинг книги
Солдат Империи

Афганский рубеж 2

Дорин Михаил
2. Рубеж
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Афганский рубеж 2

Ваше Сиятельство 3

Моури Эрли
3. Ваше Сиятельство
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Ваше Сиятельство 3

Вернуть невесту. Ловушка для попаданки 2

Ардова Алиса
2. Вернуть невесту
Любовные романы:
любовно-фантастические романы
7.88
рейтинг книги
Вернуть невесту. Ловушка для попаданки 2

Дикая фиалка Юга

Шах Ольга
Фантастика:
фэнтези
5.00
рейтинг книги
Дикая фиалка Юга