Чтение онлайн

на главную - закладки

Жанры

Бесчисленное поддается подсчету. Кантор. Бесконечность в математике
Шрифт:

РИС. 13

Однако, по мнению Кантора (и тут мы подходим к идее бесконечности), еще одним фундаментальным свойством континуума является тот факт, что он несчетен (множество счетно, если эквивалентно натуральным числам). В серии из шести статей, опубликованных с 1879 по 1882 год в Mathematische Annalen, среди прочих вопросов о бесконечных множествах он рассмотрел альтернативные определения континуума, в которых несчетность являлась одной из его основных характеристик.

Тот

факт, что точки отрезка образуют несчетное множество, позволяет решить парадокс Аристотеля. Если отрезок состоит из точек, то, поскольку у каждой точки нулевая длина, общая длина отрезка должна составить 0 + 0 + 0 + 0 + ... = 0. Сколько нулей мы складываем? Ответ: бесконечное количество нулей; но какова мощность этой бесконечности?

Когда мы пишем 0 + 0 + 0 + 0 +..., мощность складываемых нулей равна ******** ..., то есть она такая же, как у натуральных чисел. Мы складываем счетное количество нулей! Сумма счетного количества нулей действительно равна нулю, поэтому континуум не может быть счетным.

Но у несчетных сумм свои правила, которые отличаются от правил счетных сумм, и интересно, что сумма несчетного количества нулей может быть больше нуля. Таким образом, как говорил Кантор, мы видим, что различие между счетностью и несчетностью имеет решающее значение в определении вещественных чисел и, следовательно, в исчислении. Но картина еще не завершена. Почему в заголовке статьи, в которой Кантор дает определение вещественным числам, упоминаются «тригонометрические ряды»? Что это такое и какую роль они сыграли в развитии научной мысли Кантора? Об этом — в следующей главе.

ГЛАВА 4

Бесконечные ординальные числа

В 1883 году Георг Кантор опубликовал статью «Основы общего учения о многообразиях», которая стала кульминацией его математического творчества. В ней он впервые дал определение множеству бесконечных чисел, которые назвал ординальными. Зерно идей, изложенных в этой работе, уже присутствовало в статье, которую Кантор написал десятью годами ранее, но для того чтобы полностью развить их, ему требовалось преодолеть интеллектуальные предубеждения своей эпохи.

В подходе к математике Георга Кантора и Рихарда Дедекинда было много общего. В частности, оба соглашались с необходимостью ввести в нее понятие множества. Но что это такое — «понятие теории множеств»?

В статье 1883 года, озаглавленной «Основы общего учения о многообразиях» с подзаголовком «Математически-философский опыт учения о бесконечном» и изданной Кантором самостоятельно в виде отдельной монографии (с «самыми удивительными, самыми неожиданными идеями»), он отмечал: 

«Mannigfaltigkeitslehre [учение о многообразиях]. Этими словами я обозначаю одну чрезвычайно обширную дисциплину, которую до этого я пытался разработать лишь в специальной форме арифметического или геометрического учения о множествах. Под «многообразием» или «множеством» я понимаю вообще всякое многое, которое можно мыслить как единое, то есть всякую совокупность определенных элементов, которая может быть связана в одно целое с помощью некоторого закона». 

«Множество», таким образом, — это синоним «группы», в том смысле, в котором мы обычно употребляем это слово. Данное определение сыграло важнейшую роль в развитии математики, установив, что множество — это объект, отличный по своей сути от своих составляющих. Несколько лет спустя британский логик Бертран Рассел (1872-1970) проиллюстрировал это различие словами: «Табун лошадей — не то же самое, что лошадь».

Множество — как закрытый мешок, в котором содержатся абсолютно определенные вещи, но их нельзя увидеть, мы о них ничего не знаем, кроме того, что они существуют и они определены.

Рихард Дедекинд в письме немецкому математику Феликсу Бернштейну, 1899 год

Так, множество всех рациональных чисел, которое обычно обозначается буквой Q, имеет особые характеристики. Они относятся только к Q в целом, но не к рациональным числам по отдельности, например счетность. В случае, когда мы говорим о Q как о совокупности актуально существующей, определение множества подразумевает, что мы должны принять идею актуальной бесконечности.

Мы можем совершать операции с числами — складывать или умножать — так же, как с множествами (например, объединять). Если есть два множества, их объединение даст другое множество, включающее в себя все объекты, из которых состоят эти два множества. Если мы возьмем множество натуральных чисел N, членами которого являются 0, 1,2, 3, ..., и множество отрицательных целых чисел ', то их объединением будет множество целых чисел, которое обычно обозначается буквой (первой буквой немецкого слова Zahl, «число») и содержит одновременно члены N и '. В записи математическими символами это выглядело бы так: N U ’ = (см. рисунок).

Одна из особенностей, которую Кантор описал в своей статье 1895 года, проиллюстрирована на рисунке: объединение двух счетных множеств всегда дает в результате счетное множество. Изучение свойств, которые относятся либо к множествам, либо к объектам самим по себе, составляет предмет так называемой теории множеств, и Кантор считается ее создателем, поскольку первым начал исследовать эти свойства. Одним из важнейших аспектов теории множеств является изучение мощности бесконечных множеств. Именно поэтому говорят, что теория множеств и теория математической бесконечности — это, в сущности, одна и та же теория.

Объединение двух множеств содержит одновременно элементы и того и другого.

ТОЧКИ СОПРИКОСНОВЕНИЯ

Выходит, что теория множеств родилась в 1883 году? Почему же тогда задолго до этого, в 1872 году, Кантор и Дедекинд уже сошлись на том, что в математику необходимо ввести понятия множеств?

В 1872 году Кантор опубликовал статью, в которой было предложено решение проблемы континуума. Решение состояло в том, чтобы найти такое определение вещественных чисел, которое не опиралось бы на геометрические понятия. Важно отметить, что уже тогда Кантор знал: эта задача приведет его к актуально бесконечным множествам.

В том же году Дедекинд опубликовал решение вопроса континуума, близкое к предложенному Кантором и основанное на так называемых дедекиндовых сечениях. Теперь понятно, почему в 1872 году двое ученых сочли, что их взгляды на математику настолько схожи.

БЕСКОНЕЧНОСТЬ БОЛЬЦАНО

Математик Бернард Больцано родился в Праге в 1781 году. В сочинении «Парадоксы бесконечного», опубликованном в 1851-м, спустя три года после его смерти, он предвосхитил некоторые идеи Кантора, обнародованные гораздо позже, пусть даже он не упомянул о существовании нескольких уровней бесконечности и не создал полноценную теорию математической бесконечности.

Поделиться:
Популярные книги

Сиротка 4

Первухин Андрей Евгеньевич
4. Сиротка
Фантастика:
фэнтези
попаданцы
6.00
рейтинг книги
Сиротка 4

Последний Паладин. Том 7

Саваровский Роман
7. Путь Паладина
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Последний Паладин. Том 7

Не грози Дубровскому!

Панарин Антон
1. РОС: Не грози Дубровскому!
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Не грози Дубровскому!

Отмороженный

Гарцевич Евгений Александрович
1. Отмороженный
Фантастика:
боевая фантастика
рпг
5.00
рейтинг книги
Отмороженный

Кровь и Пламя

Михайлов Дем Алексеевич
7. Изгой
Фантастика:
фэнтези
8.95
рейтинг книги
Кровь и Пламя

Мимик нового Мира 14

Северный Лис
13. Мимик!
Фантастика:
юмористическое фэнтези
постапокалипсис
рпг
5.00
рейтинг книги
Мимик нового Мира 14

Шериф

Астахов Евгений Евгеньевич
2. Сопряжение
Фантастика:
боевая фантастика
постапокалипсис
рпг
6.25
рейтинг книги
Шериф

Месть за измену

Кофф Натализа
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Месть за измену

Герой

Бубела Олег Николаевич
4. Совсем не герой
Фантастика:
фэнтези
попаданцы
9.26
рейтинг книги
Герой

Я еще граф

Дрейк Сириус
8. Дорогой барон!
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Я еще граф

(Не) Все могут короли

Распопов Дмитрий Викторович
3. Венецианский купец
Фантастика:
попаданцы
альтернативная история
6.79
рейтинг книги
(Не) Все могут короли

Первый пользователь. Книга 3

Сластин Артем
3. Первый пользователь
Фантастика:
боевая фантастика
рпг
5.00
рейтинг книги
Первый пользователь. Книга 3

Убивать чтобы жить 6

Бор Жорж
6. УЧЖ
Фантастика:
боевая фантастика
космическая фантастика
рпг
5.00
рейтинг книги
Убивать чтобы жить 6

Мимик нового Мира 13

Северный Лис
12. Мимик!
Фантастика:
боевая фантастика
юмористическая фантастика
рпг
5.00
рейтинг книги
Мимик нового Мира 13