Бесчисленное поддается подсчету. Кантор. Бесконечность в математике
Шрифт:
Все множества, эквивалентные множеству натуральных чисел, Кантор называл счетными: например, множества целых и рациональных чисел счетные, а множество вещественных — нет. Поэтому вопрос можно переформулировать и так: существует ли бесконечное несчетное множество с мощностью, меньшей, чем у вещественных чисел?
Кантор несколько лет безуспешно пытался найти пример такого множества. Множества натуральных, целых, рациональных и алгебраических чисел являются счетными. Иррациональные и трансцендентные числа — несчетны, но эквивалентны вещественным числам, и, следовательно, их мощность не меньше.
В конце концов, после
Гипотеза — это утверждение, которое пока не было ни доказано, ни опровергнуто. В данном случае для подтверждения гипотезы нужно было бы доказать, что не существует множества с промежуточной мощностью между множеством натуральных и вещественных чисел, а для опровержения — найти такое множество.
В 1877 году Кантор был убежден в правильности своей гипотезы, хотя и не сумел доказать ее. Этот вопрос занимал его долгие годы, и в 1833 году его желание получить подтверждение своим идеям стало для него делом огромной важности. Ответ был довольно неожиданным.
Как мы уже говорили, любой отрезок, любой квадрат и плоскость имеют одинаковую мощность. То же самое относится и к кубу, и ко всему трехмерному пространству.
Один из выводов из этого положения: если мы обратимся к отрезку, который начертили раньше, фрагмент между точками 0 и 0,0000000000001 (минимальной длины, его невозможно увидеть невооруженным глазом) имеет точно такую же степень бесконечности, как и все трехмерное пространство, хотя оно занимает актуально бесконечный объем, гораздо больший, чем объем Вселенной (если считать, что у Вселенной конечный объем).
Это заключение, хотя и математически верное, настолько противоречит здравому смыслу, что с ним было очень сложно согласиться, тем более в 1870 году, когда большинство математиков сомневались в самом факте существования актуальной бесконечности.
Континуум- гипотеза утверждает, что «промежуточного» множества не существует, но в 1877 году еще было неизвестно наверняка, так ли это.
Кантор изложил эти выводы в статье 1877 года Ein Beitrag zur Mannigfaltigkeitslehre («К учению о многообразиях»). Для Кантора «многообразие» было синонимом «множества».
В июле он отправил текст в авторитетный берлинский «Журнал Крелле», который уже опубликовал его работу в 1874 году.
Но на сей раз ситуация была иной.
Тогда Кантор доказывал, что вещественные числа нельзя записать в виде последовательности, и заключал, что на любом отрезке числовой оси есть бесконечное количество трансцендентных чисел (бесконечность в контексте той статьи можно было интерпретировать как мощность). По совету Вейерштрасса Кантор сделал едва заметный намек на возможность сравнения двух бесконечных множеств и не стал развивать эту тему. К тому же он даже не поднял вопрос самого понятия мощности.
Сравнение бесконечных множеств стало лейтмотивом статьи 1877 года, причем трактовалось оно не просто как способ доказательства числового результата. В ней Кантор начал с определения того, что два множества эквивалентны, если между ними можно установить взаимно однозначное соответствие. Он также проиллюстрировал понятие мощности и вернулся к теореме 1874 года о трансцендентных числах, но в контексте сравнения бесконечных множеств. Затем ученый доказывал, что отрезок без одного конца эквивалентен отрезку с двумя концами и что отрезок эквивалентен квадрату. В конце Кантор впервые открыто изложил континуум-гипотезу.
Будущие поколения будут считать эту теорию [теорию множеств] болезнью, от которой мы излечились.
Французский математик Анри Пуанкаре, 1908 год
Содержание этой статьи было очень спорным для того времени, так что Кантор столкнулся с серьезной критикой. Он писал Дедекинду 10 ноября 1877 года:
«Публикация моей работы, с которой вы уже ознакомились, в журнале Борхардта [Карл Вильгельм Борхардт был издателем «Журнала Крелле» с 1856 по 1880 год] удивительным и необъяснимым образом все откладывается, хотя я отправил ее 11 июля, а вскоре получил заверение, что она будет напечатана в кратчайшие сроки.
Сегодня через моего старого друга Лампа, корректора журнала, я узнал, что Б. [Борхардт] опять отложил выход моей статьи, изменив таким образом намеченный порядок. Судьба публикации еще не решена. Он написал мне, что пытается ускорить ее одним ловким маневром. Я хочу думать, что ему это удастся, но надо также быть готовым и к тому, что он потерпит неудачу. В этом случае я намереваюсь полностью изъять мою работу из рук господина Б. [Борхардта] и напечатать ее в другом месте».
Видимо, «ловкий маневр» Лампа удался, поскольку «Журнал Крелле» опубликовал статью Кантора в 84-м выпуске 1878 года, на страницах 242-258. Однако Кантор был настолько обижен неуважительным поведением Борхардта, что больше не отправил в этот журнал ни одной статьи.
Хотя Кантор в своем письме жаловался на Борхардта, главным противником публикации его статьи был Леопольд Кронекер, и Кантор прекрасно это знал.
Немецкий математик Кронекер, родившийся в 1823 году, был очень уважаем и обладал большим влиянием. Он занимался алгеброй, исчислением, арифметикой — особенно интересовали его точки их соприкосновения, — а также метеорологией, астрономией, химией и философией. В частности, он интересовался учениями Декарта, Лейбница, Канта, Спинозы и Гегеля.
В 1861 году по рекомендации Куммера и благодаря своим многочисленным наградам он был избран членом Берлинской академии наук, а в 1868 году — Парижской. Но несмотря на разносторонние математические интересы, научные методы Кронекера были весьма ограничены ввиду его философской позиции, которую можно описать знаменитой максимой:
Die Ganze Zahl schuf der liebe Gott, alles "Ubrige ist Menschenwerk («Бог создал натуральные числа, все остальное — дело рук человека»).