Бесчисленное поддается подсчету. Кантор. Бесконечность в математике
Шрифт:
Взаимнооднозначное соответствие между множествами и последовательностями нуля и единицы.
В статье 1892 года Кантор доказал, что эти множества равномощные, однако это нельзя заключить на основе диагонального метода; необходимо предъявить отдельное доказательство. Итак, требуется доказать, что 'P(N) и R эквивалентны или что R эквивалентно всем бесконечным последовательностям нуля и единицы.
Для начала вспомним, что способ привычной нам записи натуральных чисел основан на десятичной системе, так как для них необходимы все 10 цифр, а также на степенях числа 10. Когда мы записываем число 235, на самом
Действительно, 0,333... = 3 • 10– 1 + 3 • 10– 2 + 3 • 10– 3 + 3 • 10– 4 + ... Хотя десятичная запись используется чаще всего, она не единственно возможная: например, числа можно записывать на основе так называемой двоичной системы. Как явствует из ее названия, в ней используются только две цифры — 0 и 1, — а основана она на степенях числа 2. Число 13 в двоичной системе будет записано как 1101, поскольку 13 = 1 • 23 + 1 • 22 + 0 • 21 + 1 • 20. Как и в предыдущем случае, этот способ записи не распространяется на целые числа. Например, в двоичной системе число 0,333... будет выглядеть как 0,01010101..., поскольку бесконечная сумма 0 • 2– 1 + 1 • 2– 2 + 1 • 2– 4 + 0 • 2– 5 + 1 • 2– 6 в результате даст 0,333... (записанное в десятичной системе).
Понятия теории множеств — известные и необходимые инструменты.
Жак Адамар, французский математик (1865-1963), на конференции 1897 года
Теперь докажем, что множество всех вещественных чисел с 0 по 1 на отрезке числовой прямой эквивалентно 'P(М). Необходимо получить такой результат, при котором каждому числу с 0 по 1 точно соответствует множество натуральных чисел.
Возьмем число 0,333... Как найти эквивалентное ему множество? На рисунке показано, что сначала мы должны записать его в двоичной системе. Получив выражение 0,01010101..., возьмем только его часть после запятой, в данном случае 010101..., и посмотрим, какое множество соответствует этой последовательности. Поскольку это последовательность нечетных чисел, то 0,333... соответствует ей.
Таким же образом, если у нас есть множество, образованное, например, числами 2 и 3, и мы хотим узнать, какому числу оно соответствует, сначала мы должны представить его в виде последовательности нуля и единицы. В данном случае это будет выражение 00110000..., и рассмотрим его как цифры после запятой некоего числа, записанного в двоичной системе. Это число 0,001100000..., которое в десятичной системе будет выглядеть как 0,1875. Таким образом, множеству, состоящему из чисел 2 и 3, соответствует число 0,1875.
Итак, мы видим, что 'P(N) эквивалентно множеству всех чисел между 0 и 1. Но в главе 3 отмечалось, что оно эквивалентно R (любой отрезок эквивалентен всей прямой); таким образом, мы выводим, что 'P(N) эквивалентно R. Наконец, на вопрос, какова же мощность 'P(N), в 1892 году Кантор ответил, что она равна мощности R.
Взаимно однозначное соответствие между вещественными числами (в промежутке от 0 до 1) и множествами, состоящими из вещественных чисел.
Рассмотрим
Вернемся к последовательностям нуля и единицы, но теперь рассмотрим только конечные. Сколько таких последовательностей мы можем образовать, если в них должно быть только две цифры? Всего четыре последовательности: 00, 01, 10 и 11. Если цифр три, то их будет восемь: 000, 001, 010, 100, 110, 101,011, 111, а если цифр всего четыре, то 16. Если цифра одна, то последовательностей будет только две: 0 и 1.
Итак, у нас есть 21 последовательности из одной цифры, 22 последовательности из двух цифр, 23 последовательности из трех цифр и так далее. Логично было бы предположить, что мощность последовательностей из «X0 цифр» будет равна 2X0. Действительно, в «Обоснованиях» Кантор дает определение возведению мощностей в степень и основывает его на понятии, которое он назвал покрытием. Когда мы составляем бесконечную последовательность из нуля и единицы, утверждает Кантор, мы покрываем каждый элемент N нулем или единицей.
Ответить на вопрос, какова мощность множества всех бесконечных последовательностей, состоящих из 0 и 1, — значит покрыть N, используя два этих элемента. Всего способов «покрытия» чисел 0, 1 и 2 с использованием двух элементов — 23; покрытия чисел 0, 1, 2 и 3 — 24, значит, как писал Кантор, по определению, мощность всех способов покрытия N двумя элементами равна 2X0 . К тому же, поскольку множество всех последовательностей нуля и единицы эквивалентно R, мы можем заключить, что и мощность R равна 2X0 . Поэтому континуум-гипотезу можно сформулировать и как вопрос «равно ли 2X0 X1 ?».
Если бы мы покрывали N тремя элементами, то получили бы мощность 3X0; другими словами, множество всех бесконечных последовательностей 0, 1 и 2 имеет мощность 3X0. Но не стоит путаться. Сперва можно подумать, что 3X0 больше 2X0 , однако это не так. На самом деле 2X0 = 3X0. Чтобы доказать это, достаточно увидеть, что множество последовательностей нуля и единицы эквивалентно множеству последовательностей 0,1 и 2. За этим доказательством стоит идея, что поскольку последовательности нуля и единицы могут рассматриваться как числа, записанные в двоичной системе, таким же образом и последовательности 0, 1 и 2 могут быть представлены как числа, записанные в троичной системе. Таким образом, соответствие между двумя множествами устанавливается посредством изменения системы исчисления.
Исходя из определения степени мощностей, мы можем сказать, что, поскольку мощность ординальных чисел второго класса равна X1? для этих ординальных чисел существует 2X1 возможных покрытий; также, хотя и кажется очевидным, что 2X1 больше 2X0 , это еще не было доказано. Подчеркнем, что данное утверждение действительно нуждается в доказательстве. Мы не можем просто сказать, что поскольку X1 больше X0 , то и 2X1 обязательно больше 2X0 , — мы ведь уже видели, что хотя 3 и больше 2, при этом X13 не больше 2X0 . Отсюда следует: когда речь идет о бесконечности, то, что кажется само собой разумеющимся, не всегда верно. Как мы можем представить покрытие ординальных чисел второго класса? Заметим, что если дано количество X1 ординальных чисел второго класса, то каждое из его покрытий будет иметь X1 цифр, то есть по цифре на ординал.