Бесчисленное поддается подсчету. Кантор. Бесконечность в математике
Шрифт:
В действительности мы можем доказать, что дважды сложив одно и то же бесконечное кардинальное число, в результате получим его же (как в случае с X0 + X0 = X0 ), и если мы сложим два разных бесконечных кардинальных числа, то результатом будет большее из них ( X0 + X1 = X1). Следовательно, можно утверждать, что X1 + X1 = X1 и X2 + X2 = X2 .
РИС. 3
РИС. 4
Рассмотрим еще одну операцию трансфинитной математики, но сначала необходимо ввести несколько терминов. Множество надо понимать как вещь в себе, отличную от членов, которые его составляют. Так, Q, множество всех рациональных чисел, и I, множество иррациональных, являются каждое одним объектом. Тогда мы можем представить множество, составленное только этими двумя объектами — Q и I, — которое мы условимся называть D. Членов D всего два: это Q и I, следовательно, его мощность равна 2. Не следует путать D с объединением Q и I, которое получается, если в одно множество собрать все члены двух множеств, и в результате дает множество всех вещественных чисел R. Число 3/2, например, является членом Q и R, но не D. Здесь можно провести аналогию со множеством, образованным планетами солнечной системы, назовем его 5. В нем восемь членов: Меркурий, Венера, Земля, Марс, Юпитер, Сатурн, Уран, Нептун. С другой стороны, Земля сама по себе может быть представлена как множество, члены которого — человеческие существа.
В рамках трансфинитной арифметики помимо суммы мы можем определить произведение кардинальных чисел. Для этого надо обратиться к так называемому декартову произведению множеств. Если А и В — произвольные множества, их декартово произведение будет записываться как А x В и определяться как множество, образованное всеми парами, первые члены которых являются элементами А, а вторые — В. Как это делается в текстах по теории множеств, пара, образованная, например, числами 1 и 2, обозначается как (1,2). Порядок записи элементов очень важен, поскольку (1,2) — не та же самая пара, что (2,1). Поэтому обычно говорят об упорядоченных парах. Итак, если А — это множество, образованное числами 0 и 1, а В — числами 2,3 и 4, то А х В — это множество, состоящее из пар (0,2), (0,3), (0,4), (1,2), (1,3), (1,4). Обратим внимание на то, что А имеет мощность 2; В — мощность 3, а А х В — мощность 6. Как следствие из предыдущего примера, произведение мощности А на мощность В будет мощностью А x В (в отличие от того, что происходит в случае сложения, здесь не имеет значения, есть ли у А и В общие члены). Чему равно X0 х X0 ? Если мы возьмем множество всех натуральных чисел N (мощность которого, как мы знаем, равна X0 ), то исходя из предыдущего определения X0 • X0 — мощность N x N (множество всех пар натуральных чисел). Далее будет доказано, что N х N счетное.
Чтобы доказать, что N х N счетное, запишем все составляющие его пары в последовательность. Начнем с единственной пары, дающей в сумме 0, потом пары, сумма которых равна 1, затем — 2 и так далее.
(0,0), (0,1), (1,0), (0,2), (1,1), (2,0), (0,3), (1,2), (2,1), (3,0),...
Эта запись позволяет нам установить взаимно однозначное соответствие между «индивидуальными» натуральными числами и парами натуральных чисел:
Это соответствие доказывает, что N х N счетное, следовательно, его мощность равна X. Итак, с одной стороны, произведение мощностей дает понять, что мощность N x N равна X0 • X0 . С другой стороны, мы только что доказали: мощность N х N равна X0 . Отсюда следует, что X0 • X0 = X0 .
Мы — члены Земли, но не 5, поскольку не являемся планетами Солнечной системы. С точки зрения S каждая планета — самостоятельный объект, и не имеет никакого значения, как он образован. Аналогично, множество D определенное выше, состоит из двух членов, и для него не важно, из чего, в свою очередь, состоят они.
Теперь рассмотрим множества, образованные натуральными числами. Например, множество N, состоящее из всех натуральных чисел, множество четных чисел, нечетных, простых; множество, состоящее только из числа 45; только из тех чисел, которые оканчиваются на 8; состоящее только из чисел 5,7 и 22 и многие другие, каждое из которых, как в случае с Q и I, должно приниматься как самостоятельный объект. Итак, мы можем рассмотреть множество, члены которого — это все множества, могущие быть образованными при помощи натуральных чисел — как упомянутые выше, так и все остальные возможные множества. Это новое множество обычно обозначается 'P(N) и читается как «части N», а его члены, следовательно, — это множества, а не числа. Множество всех четных чисел — член 'P(N), как и множество, состоящее из числа 2; но само число 2 — не член 'P(N), так как его члены — только множества. Здесь для теории множеств проходит тонкое, но очень важное различие: число 2 и множество, состоящее из числа 2, — не одно и то же. Чтобы подчеркнуть это различие, множество из числа 2 обычно записывается как {2}. Фигурные скобки позволяют нам графически показать разницу между 2 — числом — и {2} — множеством. Так же, например, множество, образованное числами 2 и 34, обозначается {2, 34}, а множество четных чисел — {0, 2, 4, 6, 8,...} (см. рисунок). Таким образом, множество D упомянутое выше и состоящее из множеств Q и I, будет записано как {Q и I}.
Арифметику кардинальных чисел нельзя путать с арифметикой ординальных. Кардинальные числа связаны с понятием количества, а их сумма — с идеей добавления элементов. Следовательно, как мы только что увидели, X0 + 1 = X0 , то есть X0 + 1 не больше X0 . Ординальные же числа выражают понятие «места в последовательности», и их сумма связана с идеей продвижения по этой последовательности. Так, например, + 1 обозначает позицию, идущую непосредственно за , и поэтому + 1 больше, чем . В «Обоснованиях» Кантор также писал и об ординальной арифметике, которая не рассматривается в этой книге.
Некоторые множества, образованные натуральными числами.
Вопрос, на который Кантор ответил в своей статье 1892 года, гласит: «Какова мощность 'P(N) ?» Для ответа нужно найти удобный способ представления множеств, образованных натуральными числами. Для определения числового множества достаточно знать, какие числа принадлежат множеству, а какие нет. Представим, что двое, Алиса и Бруно, играют в игру: Алиса загадывает множество, а Бруно должен отгадать его. Для этого он по порядку называет натуральные числа: 0, 1,2, 3, 4,...; каждый раз, когда названное число входит в загаданное множество, Алиса говорит «Да», если нет — «Нет». Если она говорит: «Нет, да, нет, да, нет, да, нет, да,...», Бруно может заключить, что речь идет о множестве нечетных чисел. Если все ее ответы — «Да», то это множество 'P(N) ; если это множество простых чисел, то ответы будут: «Нет, нет, да, да, нет, да, нет, да, нет, нет, нет, да,...». Каждое «Да» мы можем заменить числом 1, а каждое «Нет» — числом 0. Таким образом, каждое множество, состоящее из натуральных чисел, будет являться бесконечной последовательностью нуля и единицы. Если мы перезапишем ответы Алисы, то множество нечетных чисел будет представлено последовательностью 010101..., множество 'P(N) — 11111..., а множество простых чисел — 001101010001... То есть каждой бесконечной последовательности нуля и единицы соответствует некое множество, и наоборот, каждому множеству соответствует бесконечная последовательность нуля и единицы. Это взаимно однозначное соответствие подразумевает, что вопрос о мощности 'P(N) и мощности всех бесконечных последовательностей нуля и единицы — одно и то же (см. рисунок).
В статье 1892 года «Об одном элементарном вопросе учения о многообразиях» Кантор доказывает по существу две вещи. Прежде всего — что множество всех последовательностей нуля и единицы не является счетным, поэтому и 'P(N) несчетно. Для этого ученый использовал диагональный метод (см. главу 2). В действительности данный метод впервые появился именно в этой работе 1892 года. Доказательство несчетности, которое привел Кантор в 1874 году, следовало другой логике и основывалось на определении вещественных чисел.
Доказательство, что 'P(N) несчетное, основывается на алгоритме, описанном в главе 2 для вещественных чисел. Однако несчетность 'P(N) и R, даже если в ходе доказательства мы рассуждали так же, не гарантирует, что у них одинаковая мощность. Метод диагонали дает нам отрицательный результат, то есть позволяет убедиться, что ни у 'P(N), ни у R мощность не равна X0 , но не показывает, какую конкретно мощность имеет каждое из них, и не дает оснований заключить, что их мощности равны.