Чтение онлайн

на главную - закладки

Жанры

Беседы о физике и технике
Шрифт:

ЭТА ПРОБЛЕМА ВЕСЬМА АКТУАЛЬНА…

Известно, что старые очистные сооружения, используемые в ряде случаев еще и до настоящего времени, занимают территории в несколько гектаров, очищают сточные воды длительное время, из них возможна утечка, они отравляют окружающую атмосферу. Таким образом, только замена громоздких, экономически невыгодных существующих очистных сооружений на машины обратного осмоса — задача современного научно-технического прогресса, решение которой затрагивает весь комплекс вопросов НТР: от природоохранительных до социально-экономических.

КАКИЕ

КРИТЕРИИ НАИБОЛЕЕ ВАЖНЫ ПРИ ВЫБОРЕ И СОЗДАНИИ МЕМБРАНЫ?

Перед создателями промышленных осмотических установок встали прежде всего такие проблемы: какие полимеры пригодны для использования их в качестве мембран, каковы должны быть размеры пор, их количество, т. е. какой должна быть поверхность мембран?

Первоначальное предположение о том, что мембрана работает, как сито, не подтвердилось. Оказалось, что поры должны быть много крупнее молекул воды, молекул и ионов растворенных в ней веществ. Ученые пришли к выводу о том, что внутри пор и на поверхности мембраны образуется слой воды, связанный физико-химическими силами с материалом мембраны.

В этом случае вода теряет свою растворяющую способность и становится как бы преградой на пути растворенных веществ.

Следовательно, дело не только в размерах пор, но и в материале для изготовления мембран, т. е. в выборе такого материала, к которому вода хорошо «прилипает» (например, гидрофильные полимеры хорошо набухают в воде).

С другой стороны, «толстые» мембраны (0,01 — 0,1 мм) обладают небольшой производительностью, а очень «тонкие» пленки (менее 0,01 мм) совершенно непрочны и неспособны, следовательно, выдержать давление 50—100 кПа (~50—100 атм).

Эту трудность все же удалось обойти, изготовив двухслойные ацетатцеллюлозные мембраны. Один слой у них «толстый», обеспечивающий механическую прочность мембраны (каркас мембраны), а другой — тонкий активный, с мельчайшими порами. Кроме того, необходимо добиваться, чтобы поры мембран, пропускающие, например, только воду, были одного размера.

При создании аппаратов обратного осмоса обязательным требованием к их конструкции должно быть осуществление большой скорости протекания раствора и отсутствие падения давления раствора у мембраны вследствие повышения концентрации задерживаемого вещества. Последнее как раз и достигается лучшим перемешиванием раствора с повышением скорости течения жидкости.

НАВЕРНОЕ, ИМЕЕТ ЗНАЧЕНИЕ И ТО, КАК УЛОЖЕНЫ МЕМБРАНЫ.

Наиболее проста плоскопараллельная укладка мембран (рис. 18). «Бутерброды» из пористой подложки и мембраны укладывают один на другой и стягивают болтами. Конструкция предусматривает быструю замену вышедшей из строя мембраны.

Рис. 18. Аппарат с плоскопараллельной укладкой мембран

Разделяемый раствор с достаточно высокой скоростью протекает в узком зазоре между «бутербродами». Дальнейшее усовершенствование аппаратов пошло по линии разработки новых систем мембран и их укладки, повышения плотности упаковки мембран (более 500 м2 на 1 м3 объема).

Наиболее перспективными и получившими применение считаются аппараты с мембранами в виде полых волокон толщиной с человеческий волос. Здесь поверхность мембран может составлять уже десятки тысяч квадратных метров в 1 м3 объема.

Кроме использования аппаратов обратного осмоса для очищения промышленных, в том числе и сельскохозяйственных, сточных вод следует отметить получение с их помощью пресной воды на кораблях дальнего плавания, регенерирование воды экипажами космических кораблей. Сгущенное молоко, фруктовые и овощные; соки еще вкуснее и полезнее, если их концентрирование производилось обратным осмосом, позволяющим сохранить все вещества, содержащиеся в натуральных продуктах.

РАССКАЖИТЕ О ПРОМЫШЛЕННОЙ РЕГЕНЕРАЦИИ ВОДЫ.

Приведем схему такой установки (рис. 19). Она не требует особых пояснений, отметим лишь главное. Установка обратного осмоса позволяет очищать стоки (в отличие от методов отстойников) от любых загрязнений: органических и неорганических веществ, бактерий и вирусов. Очищенную воду очень высокого качества можно вновь использовать на производстве. Происходит, кроме того, концентрация стоков, а это облегчает извлечение растворенных в них ценных веществ, превращая любое производство в безотходное.

Многие проблемы еще предстоит решить. И решение каждой из них будет открывать новые заманчивые перспективы исследований и внедрения их результатов в производство. Важно то, что освоение обратного осмоса вышло за пределы лабораторий и осмос все шире работает на людей, являясь реальным результатом научно-технического прогресса.

Рис. 19. Схема промышленной установки регенерации воды

5. Настоящее и будущее солитонов

В августе 1834 г. вблизи английского города Эдинбурга молодым человеком по имени Джон Скотт Рассел (1808–1882) было сделано одно из самых интересных открытий в физике, значение которого не только не было по достоинству оценено его современниками, но про которое вообще не вспоминали более 130 лет.

Что же за открытие произвел Рассел, увидевший в, казалось бы, обычном явлении то, что не заметили другие и что сейчас стало темой тысяч научных работ в физике, математике, гидромеханике, астрофизике, океанографии, биологии?

ПОСЛЕ ТАКОГО ВСТУПЛЕНИЯ МОЖНО ЖДАТЬ ЧЕГО-ТО СВЕРХЪЕСТЕСТВЕННОГО…

Выполняя поручение одной из компаний, Рассел исследовал возможность движения по каналу, соединяющему Эдинбург с Глазго, паровых судов вместо небольших барж, перемещавшихся с помощью лошадей. Рассел проводил испытания с баржами различной формы, движущимися с различными скоростями.

И вот в одном из опытов баржа, которую быстро тянула по узкому каналу пара лошадей, неожиданно остановилась. Рассел обратил внимание на то, что вода, которую баржа привела в движение, при этом продолжала перемещаться. Вода катилась вперед, принимая форму большого одиночного возвышения в виде округлого, гладкого и четко выраженного холма, который с постоянной скоростью, не меняя своей формы, двигался вдоль канала.

Поделиться:
Популярные книги

Энфис 6

Кронос Александр
6. Эрра
Фантастика:
героическая фантастика
рпг
аниме
5.00
рейтинг книги
Энфис 6

Инкарнатор

Прокофьев Роман Юрьевич
1. Стеллар
Фантастика:
боевая фантастика
рпг
7.30
рейтинг книги
Инкарнатор

Вечный. Книга I

Рокотов Алексей
1. Вечный
Фантастика:
боевая фантастика
попаданцы
рпг
5.00
рейтинг книги
Вечный. Книга I

Стеллар. Заклинатель

Прокофьев Роман Юрьевич
3. Стеллар
Фантастика:
боевая фантастика
8.40
рейтинг книги
Стеллар. Заклинатель

Измена. Я отомщу тебе, предатель

Вин Аманда
1. Измены
Любовные романы:
современные любовные романы
5.75
рейтинг книги
Измена. Я отомщу тебе, предатель

Два лика Ирэн

Ром Полина
Любовные романы:
любовно-фантастические романы
6.08
рейтинг книги
Два лика Ирэн

Ведьма

Резник Юлия
Любовные романы:
современные любовные романы
эро литература
8.54
рейтинг книги
Ведьма

Рядовой. Назад в СССР. Книга 1

Гаусс Максим
1. Второй шанс
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Рядовой. Назад в СССР. Книга 1

Таблеточку, Ваше Темнейшество?

Алая Лира
Любовные романы:
любовно-фантастические романы
6.30
рейтинг книги
Таблеточку, Ваше Темнейшество?

Столичный доктор

Вязовский Алексей
1. Столичный доктор
Фантастика:
попаданцы
альтернативная история
8.00
рейтинг книги
Столичный доктор

Последний Паладин. Том 2

Саваровский Роман
2. Путь Паладина
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Последний Паладин. Том 2

Неудержимый. Книга X

Боярский Андрей
10. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Неудержимый. Книга X

Идеальный мир для Лекаря 11

Сапфир Олег
11. Лекарь
Фантастика:
фэнтези
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 11

Подчинись мне

Сова Анастасия
1. Абрамовы
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Подчинись мне