Беседы о физике и технике
Шрифт:
Фиолетовый столб — это «дедушка» современных неоновых и флуоресцентных световых трубок. Окраска испускаемого такой трубкой света зависит от вида заполняющего ее газа. Неон при давлении приблизительно в одну сотую атмосферы испускает яркий оранжевый свет при пропускании через него тока, гелий — розовато-белый, пары ртути — зеленовато-голубой.
НАБЛЮДЕНИЕ ФАРАДЕЯ ПРИВЕЛО К СЕРЬЕЗНЫМ ТЕОРЕТИЧЕСКИМ ВЫВОДАМ.
Дальнейшие исследования показали, что между катодом и анодом распространяется излучение (названное катодным), представляющее собой поток электронов. Было установлено, что пробег катодного излучения в воздухе при нормальном давлении и нормальной температуре
Дж. Дж. Томсон писал: «Таким образом, катодные лучи представляют собой новое состояние вещества, существенно отличное от обычного газообразного состояния…; в этом новом состоянии материя представляет собой вещество, из которого построены все химические элементы».
Лоренц и Зееман предположили существование внутри атома маленьких заряженных частиц, вращающихся по орбитам внутри атома и способных испускать электромагнитные волны, к которым относится и свет.
На основании полученных уширенных спектральных линий удалось оценить значение отношения заряда к массе (е/m) предполагаемой составной частицы атома.
Было установлено, что действительная масса находящейся в атоме частицы составляет около 1•10– 8 массы атома. Примерно такая же масса получилась в расчетах Томсона для носителей электричества в катодных лучах.
1897 год, когда впервые была измерена масса электрона, принято считать датой открытия электрона.
ОТКРЫТИЕ ЭЛЕКТРОНА ПОМОГЛО ПОНЯТЬ СТРУКТУРУ АТОМА?
Начиная с 1897 г. стало ясно, что необходимо задуматься о структуре атома в целом, ибо открытие Зееманом частиц, обнаруженных в катодных лучах, еще не означало, что атом состоит только из таких частиц. Атом уже не мог больше рассматриваться как мельчайшая и самая фундаментальная частица.
Герц (1887) и Томсон (1897) экспериментально установили, что ультрафиолетовое излучение вызывает эмиссию отрицательно заряженных частиц из некоторых металлов (рис. 25).
Рис. 25. Принцип работы фотоэлемента
Измерения показали, что эти частицы по своим параметрам близки к частицам катодного излучения, т. е. в процессе эмиссии были обнаружены частицы, которые можно было отождествлять с катодным излучением. В те же годы Томсон определил массу отрицательно заряженных частиц, испускаемых нагретым до температуры плавления металлом, и значение отношения е/m обнаруженных частиц. Полученное отношение удовлетворительно согласуется со значением этого отношения для частиц катодных лучей.
Таким образом, изучение природы электрических явлений уже к 1890 г. дало возможность накопить много убедительных фактов, позволяющих утверждать, что электрон является составной частью атома. Теперь усилия физиков были направлены на изучение свойств электрона, ставились эксперименты и развивались теории, которые помогли бы осмыслить роль этой частицы в многочисленных химических и физических явлениях.
КАК ПОВЛИЯЛО ОТКРЫТИЕ ЭЛЕКТРОНА НА ДАЛЬНЕЙШЕЕ РАЗВИТИЕ НАУКИ?
Открытие электрона и логически связанные с ним открытия рентгеновского излучения и явления радиоактивности выявили новые возможности для экспериментальных исследований. Когда была усовершенствована техника эксперимента и увеличена точность наблюдений, стало ясно, что классические теории физики, например теория электромагнитных полей Максвелла, не
В целом полученные теоретические и экспериментальные данные, достигнутые на основе квантовой механики, дали возможность ответить на следующие вопросы:
1) каким образом атомы поглощают или испускают излучение?
2) каковы свойства проводников, изоляторов и полупроводников?
3) какие существуют способы соединения различных атомов в молекулы? и т. д.
НУ, И КОНЕЧНО, НУЖНО ОБЯЗАТЕЛЬНО СКАЗАТЬ, ЧТО ДАЛО ОТКРЫТИЕ ЭЛЕКТРОНА ПРАКТИКЕ!
Следствием открытия волновой природы электронов стало изобретение Руденбергом в 1930 г. электронного микроскопа (рис. 26).
Рис. 26. Общий вид электронного микроскопа УЭМ-100
За годы, прошедшие со дня изобретения, электронный микроскоп стал незаменимым исследовательским прибором в медицине, в промышленности и в исследовательской работе.
Электрон используют в качестве «трудолюбивой рабочей лошади» в самых различных сферах. Построены различного рода установки, позволяющие ускорять электроны до энергии в несколько миллиардов электрон-вольт и с их помощью исследовать структуру вещества. Чтобы почувствовать масштаб этих цифр, достаточно вспомнить, что электроны в атомах, участвующие в процессах поглощения и испускания видимого света, а также в процессах химических взаимодействий между атомами, имеют энергии порядка нескольких электрон-вольт. В радиолампах электроны (рис. 27) достигают энергий нескольких сотен электрон-вольт.
Рис. 27. Трехэлектродная лампа (а) с нитью накала H, сеткой С, анодом А и изображения триода на радиосхемах (б)
В катодно-лучевых или телевизионных трубках (рис. 28) энергия электронов равна примерно десяти тысячам электрон-вольт, а в некоторых современных рентгеновских установках она доходит до миллиона электрон-вольт. Современные ускорители позволяют получить энергию в тысячи и десятки тысяч раз больше, чем миллионы электрон-вольт (рис. 29).
С помощью полученных на ускорителях сверхбыстрых электронов можно изучать структуру протонов, нейтронов и других частиц.
Рис. 28. Схематическое изображение электронно-лучевой трубки
Рис. 29. Линейный ускоритель ионов до энергии 10 МэВ (Харьков)
ЭЛЕКТРОННАЯ ЛАМПА — ТЕМА ОСОБОГО РАЗГОВОРА…