Чтение онлайн

на главную - закладки

Жанры

Беседы о рентгеновских лучах
Шрифт:

Однако и скептики подняли голос. "Даже определение абсолютно точных и строгих правил узнавания буквы А во всех видах, встречающихся хотя бы в печатном тексте, - грандиозная задача", - напомнил американский математик У. Питтс и выразил сомнение, что ее вообще удастся когда-либо решить. А профессор М. Таубе (тоже США) в книге "Компьютеры и здравый смысл.

Миф о думающих машинах" (1961 г,) высказался со всей прямотой: "Энтузиастам вычислительных машин следует либо прекратить болтовню об этом, либо принять на себя серьезное обвинение в том, что они сочиняют научную фантастику с целью пощекотать читателям нервы в погоне за легкими деньгами и дешевой популярностью".

Что

же получилось?

Еще в 1957 году родился "Марк-1". Так был назван перцептрон автоматический зрительный анализатор, построенный Ф. Розенблаттом (США) и ставший первой из немногих технических моделей восприятия.

В дальнейшем распознавание образов моделировалось преимущественно математически на цифровых электронно-вычислительных машинах. Появились компьютеры, которые анализировали снимки звездного неба и ядерных реакций.

В 60-х годах "узнающие" программы были составлены и успешно испытаны в СССР. Один из инициаторов этих работ, М. Бонгард, так комментировал результаты, полученные при его участии: "Пишущие о кибернетике любят заканчивать статью заклинанием: раз человек составил программу, значит, он передал ей часть своих знаний; посему-де машина никогда не будет умнее своего создателя. Про автомат, узнававший нефтеносность пластов, никак не скажешь, что программисты передали ему свои знания: ведь мы ничего не понимали в геологии! Откуда же программа получила все необходимые сведения? Только благодаря наблюдению и, если хотите, "творческому осмыслению" примеров, продемонстрированных при обучении. Становится понятной роль хороших "машинных педагогов". Благодаря им универсальная программа получила специализацию в геофизике А могла приобрести ее в медицинской диагностике или в промышленной дефектоскопии".

Компьютеры нашли свое место и в рентгенологии.

Они применяются при статистической обработке материалов клинико-рентгенологических исследований, с их помощью можно устанавливать взаимосвязь между признакями, выявляя таким образом причину и следствие; электронно-вычислительные машины уже ставят диагнозы. Наконец, предпринимаются настойчивые попытки применить ЭВМ для анализа флюорограмм, отбирать из огромного их количества те, которые заставляют подозревать болезнь. Такая предварительная сортировка значительно облегчает работу врача: ему остается просмотреть лишь 0,01 первоначального количества снимков.

Результаты пока, честно говоря, довольно скромные.

Но нельзя забывать, сколь нелегкое это дело - распознавание болезней методами рентгенодиагностики. Формализовать его для машины необычайно трудно: не обладая интуицией, она требует детальнейших инструкций, расписывающих каждый логический шаг.

Впрочем, работа продолжается, и небезуспешно. Появилось уже несколько диагностических алгоритмов.

В их основе различные формы логики - детерминистская, вероятностная, эвристическая. Первая (ее название происходит от латинского "определенный") позволяет с самого начала отсечь явно негодные варианты. Круг возможных заболеваний резко сужается. Но какое же из них у пациента?

Начинается вероятностный анализ. Отбираются наиболее правдоподобные гипотезы. Получается целый ряд возможных недугов. Но какой именно у данного человека при данных симптомах? Прибегают к дополнительному, уточняющему обследованию. Оно снова сужает круг предположений, переводит диагностику опять на детерминистскую основу.

Есть еще эвристический алгоритм. Он сочетает элементы человеческого мышления и машинной формальной логики. Это, пожалуй, самый многообещающий принцип:

роботово - роботу, а человеку - человеческое.

Машина механически перебирает все имеющееся в ее памяти множество признаков. Человеческое мышление более экономно. Врач оперирует, как правило, малым набором признаков, зато использует множество конъюнкций (соответствий, взаимосвязей между признаками). Перебирая многие комбинации признаков, он сразу же отбрасывает наименее вероятные варианты и сосредоточивается на наиболее вероятных. Здесь человек намного превосходит машину, хотя и страдает такими недостатками, как субъективизм, неполнота информации, отсутствие жесткой диагностической логики, широкая индивидуальная вариабельность...

В век ЭВМ мы по-новому начинаем смотреть на старый метод познания аналогию. Метод аналогии, или метод поиска прецедента заключается в сравнении одного случая неизвестного класса с другим, известным, случаем.

На фоне могучих соперников - индукции и дедукции - аналогия всегда считалась чем-то вроде Золушки.

К ней прибегали в тех случаях, когда личного или коллективного опыта недоставало. Да, если уж говорить честно и откровенно, познание от частного к частному не могло считаться полноценным в силу скромных возможностей человеческой памяти и мимолетности человеческой жизни. Не может опыт одного человека быть достаточным для того, чтобы в каждой конкретной ситуации, требующей принятия решения, удалось вспомнить подобный случай из своей практики. Вот почему неубедительно звучат слова доктора, пусть даже убеленного сединами: "А помните, у нас был подобный случай..." или "Я помню..."

Аналогией в теории познания называется умозаключение, в котором вывод делается на основании сходства между объектами без достаточного исследования всех условий. В медицине это означает диагностику по сходству некоторых признаков. А так как многие заболевания проявляются похожими сочетаниями признаков - синдромами, то бывают ошибки. Пользуясь аналогией, врач иногда выделяет сходство по некоторым формальным, несущественным признакам, не учитывая различия по признакам, которые, хотя и слабо выражены, или вообще не выявлены, но являются главными, отражающими сущность заболевания.

Иное дело ЭВМ. В память машины можно занести огромное количество наблюдений из практики. Проявления болезней многообразны, но это многообразие не бесконечно, оно лимитировано определенными вариантами, поддающимися учету и программированию.

Существование динамических стереотипов в деятельности головного мозга доказал великий русский физиолог И. Павлов, а затем канадский ученый Г. Селье блестяще подтвердил это примерами из области патогенеза заболеваний.

Если вариабельность проявлений болезней не беспредельна, при достаточном объеме памяти обязательно встретится точно такой же случай. Только человек на протяжении своей жизни не в состоянии накопить и помнить такое количество наблюдений, которое позволило бы ему на все случаи жизни найти в своей памяти точно такой же достоверно подтвержденный случай.

А машина может.

Мышление рентгенолога на пути к диагнозу проходит по крайней мере четыре этапа. Первый - условно назовем скиалогическим, когда оценивается качество изображения, определяется изучаемый орган, проекция и методика исследования. Второй - семиотический, когда происходит поиск симптомов заболевания. Третий этап - синдромный. Из обнаруженных симптомов формируется модель синдрома, иначе говоря, модель неизвестной пока болезни, которую нужно отнести к определенному классу заболеваний. Четвертый этап нозологический, на котором наконец определяется, какому недугу отвечает данный комплекс признаков.

Поделиться:
Популярные книги

Неудержимый. Книга XVIII

Боярский Андрей
18. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Неудержимый. Книга XVIII

Proxy bellum

Ланцов Михаил Алексеевич
5. Фрунзе
Фантастика:
попаданцы
альтернативная история
4.25
рейтинг книги
Proxy bellum

Неудержимый. Книга XI

Боярский Андрей
11. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Неудержимый. Книга XI

Неудержимый. Книга XII

Боярский Андрей
12. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Неудержимый. Книга XII

Под маской моего мужа

Рам Янка
Любовные романы:
современные любовные романы
5.67
рейтинг книги
Под маской моего мужа

Я подарю тебе ребёнка

Малиновская Маша
Любовные романы:
современные любовные романы
6.25
рейтинг книги
Я подарю тебе ребёнка

Таблеточку, Ваше Темнейшество?

Алая Лира
Любовные романы:
любовно-фантастические романы
6.30
рейтинг книги
Таблеточку, Ваше Темнейшество?

Идеальный мир для Лекаря 9

Сапфир Олег
9. Лекарь
Фантастика:
боевая фантастика
юмористическое фэнтези
6.00
рейтинг книги
Идеальный мир для Лекаря 9

Сильнейший ученик. Том 2

Ткачев Андрей Юрьевич
2. Пробуждение крови
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Сильнейший ученик. Том 2

Последняя Арена 10

Греков Сергей
10. Последняя Арена
Фантастика:
боевая фантастика
рпг
5.00
рейтинг книги
Последняя Арена 10

Виконт. Книга 1. Второе рождение

Юллем Евгений
1. Псевдоним `Испанец`
Фантастика:
фэнтези
боевая фантастика
попаданцы
6.67
рейтинг книги
Виконт. Книга 1. Второе рождение

Идеальный мир для Лекаря 19

Сапфир Олег
19. Лекарь
Фантастика:
юмористическое фэнтези
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 19

Авиатор: назад в СССР

Дорин Михаил
1. Авиатор
Фантастика:
попаданцы
альтернативная история
5.25
рейтинг книги
Авиатор: назад в СССР

Идеальный мир для Лекаря 18

Сапфир Олег
18. Лекарь
Фантастика:
юмористическое фэнтези
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 18