Бесконечная сила. Как математический анализ раскрывает тайны вселенной
Шрифт:
Общепризнанно, что некоторые аспекты нашего вечно меняющегося мира лежат за пределами приближений и моделирования, характерных для принципа бесконечности. Например, в мире субатомных частиц физики не могут представлять электрон как классическую частицу, которая движется по какой-то линии подобно планете или пушечному ядру. Согласно квантовой механике, на таком микроскопическом уровне траектории становятся размытыми и плохо определяемыми, поэтому поведение электронов приходится описывать в терминах волн вероятности, а не ньютоновских траекторий. Но как только мы это сделаем, анализ с триумфом возвращается. Он управляет эволюцией волн вероятности с помощью так называемого уравнения Шрёдингера.
Удивительно,
Пришло время ближе познакомиться с языком Вселенной. И начнем, разумеется, с бесконечности.
Глава 1. Бесконечность
Начало математике [27] положили обычные повседневные задачи. Пастухам нужно было следить за стадами. Фермерам – взвешивать собранное зерно. Сборщикам налогов – решать, сколько коров или кур крестьянин должен отдать правителю. Из таких практических требований и возникли числа. Сначала их определяли по пальцам рук и ног. Затем стали выцарапывать на костях животных. По мере того как представление чисел эволюционировало от черточек к символам, они облегчили все задачи – от налогообложения и торговли до бухгалтерского учета и переписи населения. Доказательства тому мы находим на глиняных табличках Месопотамии, созданных более пяти тысяч лет назад, – сделанная на них клиновидными значками запись называется клинописью.
27
Burton, History of Mathematics, и Katz, History of Mathematics, дают полномасштабное (хотя и без подробностей) введение в историю математики от античных времен до XX столетия. На более серьезном математическом уровне тема представлена в Stillwell, Mathematics and Its History. В качестве масштабного гуманистического подхода подойдет книга Kline, Mathematics in Western Culture.
Наряду с числами значение имели и формы. В Древнем Египте измерениям линий и углов придавали первостепенное значение. Каждый год землемерам приходилось заново проводить границы крестьянских хозяйств, поскольку разлив Нила стирал их. Эта деятельность позже дала название всей области математики, изучающей формы, – геометрия, от древнегреческого слова , которое означало «землемерие»: – «земля» и – «измеряю».
Поначалу геометрия работала с прямыми линиями и углами, что отражало ее утилитарное происхождение: треугольники были наклонными плоскостями, пирамиды – монументами и гробницами, а прямоугольники – столами, алтарями и земельными участками. Строители и плотники использовали прямые углы для построения вертикальных линий. Для моряков, архитекторов и священников знание геометрии прямых линий было необходимо для землемерных работ, навигации, ведения календаря, предсказания затмений и возведения храмов и святилищ.
Но всегда – даже когда геометрия была зациклена на прямых линиях – выделялась одна кривая, самая совершенная из всех: окружность. Мы видим ее в годичных кольцах деревьев, в волнах на пруду, в форме солнца и луны. В природе круги повсюду. Когда мы смотрим на них, они смотрят на нас – в буквальном смысле, ведь они в глазах наших близких, в зрачках и радужках. Круги и практичны, и эмоциональны, как колеса и обручальные кольца; в них есть нечто мистическое. Вечное возвращение предполагает цикл времен года, возрождения, вечной жизни и нескончаемой любви. Неудивительно, что круги привлекали внимание с тех пор, как люди стали изучать формы.
С математической точки зрения окружности воплощают изменения без изменений. Точка, двигающаяся по окружности, меняет направление движения, не меняя при этом своего расстояния от центра. Это минимальная форма изменений – самый простой способ двигаться по кривой. И, конечно же, окружность симметрична. Если вы повернете ее вокруг центра, она будет выглядеть точно так же. Такая поворотная симметрия может быть причиной распространенности этих фигур. Везде, где природу не беспокоит направление, обязательно появляются окружности. Посмотрите, что происходит, когда дождевая капля попадает в лужу: от точки удара расходятся мелкие волны. Они обязаны иметь круговую форму, потому что двигаются с одинаковой скоростью во всех направлениях и начинаются в одной точке. Этого требует симметрия.
Окружности могут также порождать другие искривленные формы. Если представить, что окружность проткнули по диаметру и стали вращать вокруг этой оси в трехмерном пространстве, то получится сфера – форма мяча или планеты. Если окружность двигать по прямой перпендикулярно ее плоскости, появляется цилиндр – форма банки или коробки для шляп. Если окружность одновременно с поступательным движением сжимается, образуется конус, если расширяется – то усеченный конус (форма абажура).
< image l:href="#"/>Окружности, сферы, цилиндры и конусы очаровывали первых геометров, но при этом они считали, что работать с ними гораздо труднее, чем с треугольниками, прямоугольниками, квадратами, кубами и прочими прямолинейными формами, составленными из кусков прямых линий и плоскостей. Ученых интересовали площади криволинейных поверхностей и объемы криволинейных тел, но они понятия не имели, как решать такие задачи. Криволинейность была сильнее.
Анализ начинался как отрасль геометрии [28] . Примерно в 250 году до нашей эры в Древней Греции вплотную занялись разгадкой кривых. Амбициозный план состоял в использовании бесконечности для построения моста между кривыми и прямыми. Приверженцы плана надеялись, что как только такая связь будет установлена, методы и техники прямолинейной геометрии можно будет перетащить через этот мост и применить для решения загадки кривых. Бесконечность поможет решить все старые задачи. По крайней мере, таков был настрой.
28
Смотрите раздел 4.5 в книге Burton, History of Mathematics; главы 2 и 3 в книге: Katz, History of Mathematics; главу 4 в книге Stillwell, Mathematics and Its History.
Должно быть, в то время такой план выглядел довольно надуманным. У бесконечности была сомнительная репутация – будто бы это нечто пугающее, а не полезное. Что еще хуже, само понятие бесконечности было весьма туманно и сбивало с толку. Что это вообще такое? Число? Место? Идея?
Тем не менее, как мы вскоре увидим, бесконечность оказалась манной небесной. Если учесть все открытия и технологии, которые в итоге выросли из анализа, то идея использовать бесконечность для решения трудных геометрических задач была одной из лучших в истории.