Чтение онлайн

на главную - закладки

Жанры

Бесконечная сила. Как математический анализ раскрывает тайны вселенной
Шрифт:

Конечно, в 250 году до нашей эры предвидеть это было невозможно. Тем не менее бесконечность тут же дала несколько впечатляющих результатов. Одним из первых и лучших стало решение давней загадки: как найти площадь круга [29] .

Доказательство с помощью пиццы

Перед тем как вдаваться в подробности, давайте набросаем ход рассуждений. Наша стратегия – представить круг в виде пиццы, а затем нарезать ее на бесконечное множество кусочков и волшебным образом переложить их так, чтобы получился прямоугольник. Это даст нам ответ, который мы ищем, поскольку перекладывание кусочков, очевидно, не меняет их площадь, а находить площадь прямоугольника мы умеем: нужно умножить его длину на ширину. Результатом будет формула для площади круга.

29

Katz, History of Mathematics,

раздел 1.5, представляет различные подходы к измерению площади круга, сделанные в различных мировых культурах. Первое доказательство было представлено Архимедом; смотрите Dunham, Journey Through Genius, глава 4, и Heath, The Works of Archimedes, 91–93.

Для такого рассуждения пицца должна быть идеализированной математической пиццей – идеально плоской и круглой, с бесконечно тонкой корочкой. Обозначим буквой С ее периметр (или длину окружности) – расстояние вдоль границы. Длина окружности – вовсе не то, что обычно интересует любителей пиццы, однако при желании мы могли бы измерить величину C с помощью рулетки.

Еще одна необходимая величина – радиус пиццы r, который определяется как расстояние от ее центра до любой точки корочки. В частности, если мы нарежем пиццу на ломтики, проводя разрезы от центра к краям, то длина прямого отрезка в таких ломтиках будет равна r.

Предположим, что мы разделили пиццу на четыре части. Их можно переложить следующим способом, но он не выглядит слишком многообещающим.

Получившаяся фигура с выступами вверху и внизу смотрится несколько странно. Это явно не прямоугольник, и определить ее площадь непросто. Похоже, нам придется отступить. Но, как и в любой драме, герою перед триумфом предстоит преодолеть трудности. Драматическое напряжение нарастает.

Однако раз уж мы тут застряли, то отметим две вещи, потому что они будут справедливы в ходе всего доказательства и в итоге дадут нам размеры искомого прямоугольника. Первая – одна половина корочки стала искривленной верхней границей новой фигуры, а вторая – нижней частью. Поэтому длина верхней границы равна C/2 и нижней границы – тоже C/2, как изображено на рисунке. Как мы увидим, в итоге эти границы превратятся в длинные стороны прямоугольника. Вторая – длина всех наклонных боковых сторон получившейся фигуры равна r, потому что это просто стороны исходных ломтиков пиццы. Эти боковые отрезки в итоге превратятся в короткие стороны прямоугольника.

Причина, по которой мы пока не видим никаких признаков искомого прямоугольника, – у нас еще недостаточно ломтиков. Если разрезать пиццу на восемь частей и переложить их таким же образом, то фигура окажется более прямоугольной.

По сути, пицца начинает походить на параллелограмм. Неплохо – по крайней мере это почти прямоугольник. Выступы вверху и внизу уже не так выпирают, как на предыдущем рисунке, – из-за большего количества ломтиков. Как и ранее, длина верхней границы фигуры равна C/2, а боковой границы – r.

Чтобы картинка выглядела еще лучше, разрежем пополам один из боковых ломтиков и перенесем его на другую сторону.

Теперь фигура очень похожа на прямоугольник. Да, вверху и внизу еще есть выступы из-за кривизны исходной корочки, но все же мы добились прогресса.

Похоже, увеличение числа кусков помогает, поэтому продолжим их нарезать. При шестнадцати ломтиках и таком же косметическом переносе половинки крайнего куска, как мы сделали только что, получается следующая фигура:

Чем больше кусков мы берем, тем сильнее сглаживаем выступы в верхней и нижней частях получающейся фигуры. Наши операции создают последовательность фигур, которые волшебным образом приближаются к определенному прямоугольнику. Поскольку фигуры к нему все ближе и ближе, назовем его предельным прямоугольником.

Смысл всей процедуры в том, что найти площадь предельного прямоугольника очень просто – достаточно перемножить его ширину и высоту. Все, что нам осталось, – выразить эти ширину и высоту через параметры исходного круга. Поскольку ломтики располагались вертикально, высота – это просто радиус r исходного круга, а ширина – половина длины его окружности, ведь его граница пошла на создание верхней и нижней границы прямоугольника – как это было для всех промежуточных фигур с выступающими краями. Следовательно, ширина равна C/2. Таким образом, площадь прямоугольника A = r x C / 2 = rC / 2. Но учитывая, что перекладывание ломтиков не меняло площади исходного круга, то и его площадь должна быть точно такой же!

Этот результат для площади круга, A = rC / 2, впервые получил (используя аналогичные, но более строгие рассуждения) древнегреческий математик Архимед (287–212 до нашей эры) в трактате «Измерение круга».

Самым новаторским аспектом доказательства было привлечение на помощь бесконечности. Имея всего четыре, восемь или шестнадцать ломтиков, мы могли сложить только фигуру с выступами. После малообещающего старта мы продвинулись к успеху, начав брать больше ломтиков; при этом получающаяся фигура все сильнее приближалась к прямоугольнику. Однако только при бесконечном множестве кусков она становилась по-настоящему прямоугольной. Эта идея и легла в основу анализа. С бесконечностью все упрощается.

Пределы и загадка стены

Предел подобен недостижимой цели. Вы можете подбираться к нему все ближе и ближе, но никогда не пройдете весь путь до конца.

Например, в доказательстве, использующем пиццу, мы могли приближаться к прямоугольнику, нарезая все большее количество ломтиков и переставляя их. Но истинной «прямоугольности» нам никогда не добиться. Мы можем лишь приблизиться к этому идеалу. К счастью, в анализе недостижимость предела обычно не имеет значения. Нередко мы можем решить задачу, представив, что способны достичь предела, а затем посмотрев, что следует из такого представления. Фактически многие из пионеров в этой области сделали свои великие открытия именно таким образом. Логически – нет. С воображением – да. Успешно – весьма.

Предел – это тонкое понятие, и в анализе оно занимает центральное место. Его не просто уловить, потому что в повседневной жизни эта идея не встречается. Пожалуй, ближайшей аналогией будет загадка стены. Если вы проходите половину расстояния до стены, затем половину оставшегося расстояния, потом половину оставшегося и так далее, то достигнете ли в конце концов этапа, на котором доберетесь до стены?

Очевидно, что ответ отрицателен, потому что в загадке стены на каждом этапе вы проходите только половину пути, а не весь путь. Сделаете ли вы десять шагов, миллион или любое другое число, между вами и стеной всегда останется какой-то промежуток. Однако столь же очевидно, что вы можете подойти к стене сколь угодно близко. Это означает, что на каком-то этапе вы окажетесь от нее в сантиметре, миллиметре, нанометре или на любом ином ненулевом расстоянии, но никогда не закончите свой путь. Здесь стена играет роль предела. На то, чтобы строго определить это понятие, понадобилось две тысячи лет. До тех пор пионеры анализа прекрасно обходились интуицией. Так что не волнуйтесь, если пределы кажутся вам сейчас туманными. Мы познакомимся с ними лучше, наблюдая на практике. С современной точки зрения пределы – это фундамент, на котором построен весь анализ.

Поделиться:
Популярные книги

Последний Паладин. Том 6

Саваровский Роман
6. Путь Паладина
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Последний Паладин. Том 6

Генерал Империи

Ланцов Михаил Алексеевич
4. Безумный Макс
Фантастика:
альтернативная история
5.62
рейтинг книги
Генерал Империи

(Не)свободные, или Фиктивная жена драконьего военачальника

Найт Алекс
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
(Не)свободные, или Фиктивная жена драконьего военачальника

Live-rpg. эволюция-3

Кронос Александр
3. Эволюция. Live-RPG
Фантастика:
боевая фантастика
6.59
рейтинг книги
Live-rpg. эволюция-3

Флеш Рояль

Тоцка Тала
Детективы:
триллеры
7.11
рейтинг книги
Флеш Рояль

Наследник с Меткой Охотника

Тарс Элиан
1. Десять Принцев Российской Империи
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Наследник с Меткой Охотника

Неудержимый. Книга IX

Боярский Андрей
9. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Неудержимый. Книга IX

Кодекс Охотника. Книга XII

Винокуров Юрий
12. Кодекс Охотника
Фантастика:
боевая фантастика
городское фэнтези
аниме
7.50
рейтинг книги
Кодекс Охотника. Книга XII

Измена

Рей Полина
Любовные романы:
современные любовные романы
5.38
рейтинг книги
Измена

Пустоцвет

Зика Натаэль
Любовные романы:
современные любовные романы
7.73
рейтинг книги
Пустоцвет

Столичный доктор. Том III

Вязовский Алексей
3. Столичный доктор
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Столичный доктор. Том III

Ярость Богов

Михайлов Дем Алексеевич
3. Мир Вальдиры
Фантастика:
фэнтези
рпг
9.48
рейтинг книги
Ярость Богов

Леди Малиновой пустоши

Шах Ольга
Любовные романы:
любовно-фантастические романы
6.20
рейтинг книги
Леди Малиновой пустоши

Совок 2

Агарев Вадим
2. Совок
Фантастика:
альтернативная история
7.61
рейтинг книги
Совок 2