Биотехнология: что это такое?
Шрифт:
Но микроскопические клетки, находясь в ферментере в постоянном движении, не слипаются, а значит, вес их не растет, и они оказываются слишком легкими для того, чтобы в силу собственной тяжести упасть на его дно. Такие клетки настолько малы по размерам, что свободно проходят сквозь самые мелкие сита. Их трудно отделить от культуральной жидкости даже с помощью сепаратора. Значит, выхода из создавшейся ситуации нет?
Почему же? Он существует. Известно, например, что специалисты, работающие над проблемой очистки сточных вод, давно и успешно используют метод биологической очистки. Делается это с помощью так называемого активного ила, представляющего собой сообщество микроорганизмов. Входящие в него бактерии тоже имеют склонность к слипанию в крупные агрегаты, после того как завершат очистку воды. «Вот бы наделить таким удивительным даром все микроорганизмы», —
Что ж, может быть, придет время, и методы генетической инженерии позволят это сделать. Пока же положение вещей следует оценивать более реалистично, а значит, и поиск решения задачи нужно вести в ином направлении. Ну почему бы, скажем, не попытаться создавать бактериям такие условия, которые если и не пробудили б в них склонности к слипанию, то устранили бы силы, ему препятствующие? Тем более что эти силы известны — одноименные электрические заряды поверхностей клеток. Нейтрализуй их — и клетки тотчас слипнутся, а затем выпадут в осадок.
Нейтрализовать заряды несложно: химикам прекрасно известно, что добавление в коллоидный раствор электролита вызывает процесс коагуляции (слипание частиц). А что, как не коллоидный раствор — культуральная жидкость ферментера? Электролитом же может служить кислота, соль. Да вы и сами не раз наблюдали в жизни процесс коагуляции. Знаете, как скисает молоко? Это воздействует на коллоидную систему (молоко) электролит — молочная кислота, вырабатываемая в процессе жизнедеятельности бактерий. Так что же — решение найдено?
К сожалению, опять нет. Потому что среди микроорганизмов есть немало таких, которые не поддаются коагуляции или коагулируют только в присутствии солей металлов, а они, как правило, для клеток токсичны.
Между тем решение проблемы все же существует. По крайней мере, о нем знали индусы еще в I тысячелетии до нашей эры, осветлявшие мутную воду с помощью соков некоторых растений. Правда, древние жители Индии и не подозревали о том, что пользуются естественными полимерами, но суть дела от этого не менялась: вода становилась прозрачной. Сегодня метод концентрирования тонкодисперсных суспензий (жидкость, в которой во взвешенном состоянии плавают твердые частицы) с помощью полимеров нашел довольно широкое применение, а выпадающие в осадок под их воздействием клетки получили название флокул, что в переводе с латыни означает «хлопья». Полимеры же, вызывающие процесс выпадания, именуются соответственно флокулянтами.
Что же происходит в растворе под воздействием флокулянта? Все то же прилипание. Макромолекулы полимера прилипают к поверхности клетки. Иногда полимер «приклеивается» сразу к нескольким клеткам, и между ними образуются своеобразные мостики, соединяющие в агрегаты тысячи микроклеток.
Аналогичный процесс известен и в биологии. Это так называемая агглютинация— слипание бактериальных клеток, попавших в организм человека или животного. Вызывается он реакцией защитных белков-иммуноглобулинов на вторжение чужака. Однако у биотехнологов свои и, надо сказать, весьма строгие требования к флокулянту. Даже полное отсутствие его собственной токсичности отнюдь не означает «добро» на использование данного полимера в микробиологическом производстве ведь он может оказаться токсичным для птиц и животных, потребляющих продукцию микробиологического синтеза. И для человека, замыкающего этот конец трофической цепи.
В общем, проблема все еще находится в стадии разработки, а ее решение, по крайней мере в ближайшей перспективе, не просматривается. Это ведь только в сказке дело делается с завидной быстротой. В жизни все обстоит иначе. Достаточно, например, проследить историю создания той же отечественной технологии получения кормового белка на основе жидких очищенных парафинов, чтобы понять, сколь сложен и труден был путь ее становления. Начался он еще до революции. И, как всегда, с того, что среди многих и многих людей, наблюдавших аналогичные явления и не придававших тому никакого значения, нашелся человек, увидевший их по-новому. Этот человек — профессор Московского университета Е. Е. Успенский. Исследуя угольные и водные культуры крапивы и хвощей, содержавшихся в сосудах с парафиновыми (или парафинизированными) стенками, ученый заметил
Так чему же, собственно, удивился профессор?
Мицелию плесневого грибка и бактериальному налету на стенках сосудов, содержащих культуральную жидкость. «Эврика! — вероятно, воскликнул про себя ученый. — Микробы-то, оказывается, способны утилизировать парафин!» Однако пройдут еще долгих девять лет, пока эстафету Е. Е. Успенского не примет его ученик студент-дипломник Владимир Таусон.
Осенью 1925 года «Журнал Русского ботанического общества» публикует на своих страницах уже защищенную дипломную работу В. Таусона под названием «Усвоение парафина микроорганизмами». По сути дела, это была первая в мире серьезная исследовательская работа на данную тему, убедительно доказавшая, что парафин способен стать единственной углеродной питательной средой для большой группы микроорганизмов. Правда, зарубежные исследователи тоже опубликовали к тому времени сообщения о наблюдаемых случаях окисления микроорганизмами углеводородов. Однако никто из них в отличие от В. Таусона не касался темы аналогичного разрушения микроорганизмами углеводородов в природе. Да и физиологии бактерий, утилизирующих парафины, практически ни в одной из этих работ внимания не уделялось.
Между тем советский исследователь, изучив геологическую деятельность таких микроорганизмов в условиях Памира, Кавказа, Таманского полуострова, устанавливает их выдающуюся роль в образовании горючих ископаемых органического происхождения — каменного угля, горючих сланцев, торфа, нефти, природного таза. Пораженный открывшейся ему истиной, В. Таусон с увлечением рассказывает о познанном не только в серии серьезнейших научных статей, но и в научно-популярных книгах, о содержании которых говорят даже названия: «Великие дела малых существ» и «Наследство микробов». А в 1939 году соратник и супруга В. Таусона, Таисия Алексеевна, старший научный сотрудник Микробиологического института АН СССР на основе огромной работы, проделанной по изучению микроорганизмов, способных использовать в качестве питательной среды парафин, выступает в одном из выпусков журнала «Микробиология» с выводами, значение которых оказалось должным образом, оценено только исследователями наших дней: «...высшие предельные углеводороды, широко распространенные в природе, могут, без сомнения, и в естественных условиях разлагаться дрожжевыми и дрожжеподобными организмами, и роль последних в круговороте углерода тем самым расширяется».
Исследования супругов Таусон и многочисленные работы других советских ученых, продолжавших изучение уникального дара микроорганизмов окислять углеводороды, и стали в дальнейшем основополагающими при разработке проблемы промышленного производства кормовых дрожжей. Но понадобилось время и опять же конкретные люди, изучающие особенности жизнедеятельности микробов, способных окислять углеводороды, чтобы между производством кормовых дрожжей, использующим в качестве субстрата продукты гидролиза растительного сырья, наметилась своеобразная тропа, ведущая к производству этих же микроорганизмов, но на основе жидких парафинов.
Среди ученых, изучавших эту проблему, были А. П. Крючкова и Г. И. Воробьева. Первая работала заместителем заведующего отделом в Московском отделении Научно-исследовательского института гидролизной и сульфитно-спиртовой промышленности (МОНИИГС), вторая была в той же лаборатории старшим научным сотрудником и именно здесь начала исследования новых для нее микроорганизмов — дрожжей. И так уж случилось (как это нередко бывает в науке), что в уникальной коллекции штаммов микроорганизмов, собранных А. П. Крючковой во время многочисленных экспедиций, в том числе и в районах нефтяных месторождений, отыскались культуры, способные окислять парафины. С ними-то и начала экспериментировать Г. И. Воробьева. Но для полноты исследований штаммы требовались еще и еще. Ведь только широко разбросив своеобразную сеть поиска, можно было надеяться на хороший «улов». И в экспедицию за микробами отправляются сотрудники Института микробиологии АН СССР, Института микробиологии и вирусологии АН УССР, специалисты многих других научных учреждений. Они везут отовсюду пробы почв, взятые в районах нефтяных месторождений, пробы сточных вод нефтеперерабатывающих заводов, активного ила из очистных сооружений, а в поиск и изучение найденных микроорганизмов включаются все новые институты и организации. Знаете, какое количество штаммов дрожжей было выделено из природных источников и найдено в заново пересмотренных институтских коллекциях за время поиска нужной культуры? Более тысячи!