Биотехнология: что это такое?
Шрифт:
Все это относится и к биотехнологии как к одному из самых эффективных направлений научно-технического прогресса, бурное развитие которой отвечает мировым тенденциям развития НТР.
И это не слова, не звонкие фразы. Убедиться в этом нетрудно, познакомившись, хотя бы бегло, с состоянием и перспективами биотехнологии в развитых капиталистических странах. Они, как вы сами понимаете, определяются прежде всего тем, что биотехнология, представляя собой синтез биологических знаний и технологического опыта, открывает заманчивые перспективы в получении
Государственными организациями Японии совместно с частными компаниями разработана десятилетняя (1981—1990 гг.) программа развития биотехнологии под кодовым названием «Лунный свет». На ее осуществление ассигнуется более 500 миллионов долларов. Программа предполагает прежде всего приоритетное развитие новейшей биотехнологии, в том числе селекции микробных штаммов, методов рекомбинации ДНК (искусственное изменение ДНК), гибридизации клеток, создание промышленной технологии биологических процессов и специальной аппаратуры.
Согласно данным министерства внешней торговли и промышленности (МВТП) Японии более 300 компаний и институтов страны работают над основными проблемами биотехнологии. Государство поощряет и содействует обмену и распространению новых технологических решений среди компаний. Выражается это, в частности, в том, что государственный центр передачи технологии, созданный в 1978 году, закупает у отдельных лиц, промышленных фирм — как в Японии, так и за рубежом — лицензии и патенты на технологические новшества и предлагает их на льготных условиях японским компаниям.
Льготное кредитование и налогообложение ежегодно обновляемых исследовательских тем осуществляет отдел науки и техники МВТП. В частности, фирмам, разрабатывающим или выпускающим новую продукцию, предоставляются налоговые льготы в размере 25 процентов, а по некоторым видам — до половины объема их затрат на исследования и разработки.
Аналогичная картина стимулированного развития биотехнологии наблюдается и в США. Ведущая роль в финансировании программ по биотехнологии здесь принадлежит Национальному научному фонду, который распределяет ассигнования между университетами, институтами, лабораториями. Его расходы составляют многие миллионы долларов. Среди приоритетных программ, финансируемых фондом, программа по биотехнологии ферментов и их использованию в пищевой и текстильной промышленности.
В числе ведомств, финансирующих исследования по биотехнологии, следует отметить НАСА, министерство здравоохранения и социального обеспечения, обороны, внутренних дел, сельского хозяйства, энергетики и другие. Заслуживает внимания программа по биотехнологии ФРГ, на разработку которой уже в 1982—1983 годах федеральное министерство исследований и технологии выделяло около 40 миллионов марок. Здесь предусматривается совершенствование технологии и оборудования для производства ферментов и аминокислот, биогаза, культивирования клеток растений. В ФРГ действует первый в странах ЕЭС биотехнологический институт, с 1975 года финансирующийся правительством, а с начала 70-х годов осуществляются государственные программы по биотехнологии, бюджетные ассигнования на которые постоянно увеличиваются.
Не менее внушительны примеры бурного становления этого приоритетного направления в Италии, Франции, Англии. И об этом надо помнить, развивая, совершенствуя нашу отечественную биотехнологию, которая уже теперь может дать народному хозяйству чрезвычайно много. Например, решить проблему полноценности тех же кормов, что во многом облегчает решение другой важнейшей проблемы — зерновой.
Сегодня, к сожалению, чтобы «погасить» несбалансированность получаемых кормов по составу аминокислот и особенно дефициту белка, колхозы и совхозы страны для получения единицы животноводческой продукции почти вдвое перерасходуют установленную норму зерна. Вот и выходит, что животноводство потребляет добрую половину всего урожая зерновых. Между тем, включение в рацион животных тонны кормовых дрожжей позволяет экономить 5—7 тонн зерна, 6—8 тонн молока (если те же дрожжи использовать на откормы телят и поросят) или 1,5 тонны сухого обезжиренного молока.
Какое значение для повышения эффективности использования всех кормов имеют добавки незаменимых аминокислот, можно судить хотя бы по такому факту. Даже десятые доли процента лизина увеличивают кормовую ценность пшеницы в полтора-три раза, овса — в полтора, кукурузы — в два, проса — в восемь раз.
Еще больший эффект может быть достигнут при комплексном применении в качестве балансирующих добавок и других кормовых препаратов незаменимых аминокислот, таких, как треонин, триптофан, глутаминовая кислота.
Разумеется, я мог бы привести бесчисленное множество примеров, подтверждающих высочайшую результативность биотехнологии. Например, именно с ней связаны перспективы широкого использования иммобилизованных (присоединенных к какой-либо инертной матрице, лишенных подвижности) ферментов для получения в промышленных масштабах различных продуктов биосинтеза. Но зачем фермент понадобилось закреплять, или, как говорят химики, «пришивать», пожалуй, стоит объяснить.
Дело в том, что все ферменты — белки, служащие биологическими катализаторами химических реакций в организме. Недаром биохимики, подтрунивая над поэтами, прославляющими венец творения природы — человека, любят говорить, что он — всего лишь котел, в котором «варятся», вступая в разнообразные реакции, около двух тысяч ферментов.
Наука давно стремилась получить в чистом виде те или иные ферменты. Решение таких задач означало бы и решение многих проблем микробиологической, фармацевтической, пищевой промышленности. Но как только ученые научились выделять ферменты нужной чистоты и в нужных количествах, выяснилось, что применять их в производстве неудобно и, как ни странно, невыгодно: изъятый из живой клетки фермент оказывался на удивление недолговечным. К тому же его нельзя было использовать вторично. Тогда-то фермент и решили «пришить» химически к какой-либо матрице, дабы удержать на месте. В качестве последней чаще всего используют полимеры. А это значит, что создание новых материалов
я веществ является одним из стимулов, ускоряющих приоритетные направления НТП. В том числе и в биотехнологии, значение которой в интенсификации самых разных производств возрастает из года в год.
Вот и получается, что успех одного научного направления определяется достижениями другого, результативность одной отрасли народного хозяйства целиком зависит от эффективности другой, вроде бы с ней даже и не смежной.
Например, создание иммобилизованных ферментов не только вывело инженерную энзимологию из критической ситуации, но и решило еще одну важнейшую проблему. Один из основателей этого направления в СССР академик А. А. Баев рассказывает так: «Вслед за ферментами появились возможности использовать и иммобилизованные живые клетки — клетки тканей животных и растений или даже целые одноклеточные организмы. Эти миниатюрные живые фабрики на привязи в отличие от ферментов осуществляют уже целую совокупность химических реакций, которые свойственны этой клетке. Таким образом, например, можно синтезировать некоторые важные органические кислоты».