Биржевая игра
Шрифт:
Вот что мы получили. Оптимизированные результаты для системы со скользящей средней применяются к рынку бондов. Теперь единственный вопрос заключается в том: какая нам польза от этой информации? Я боюсь, что не слишком большая. Сама по себе эта информация не имеет никакого смысла, кроме того, что при определенных параметрах она дает нам определенные результаты за пятилетний период. Приведенные выше результаты - это то, что вы обычно видите, когда вам предлагают купить метод или систему, то есть это результаты гипотетического тестирования. Чаще всего такие результаты довольно хороши. Тем не менее в следующих разделах книги показано, что оптимизация торговой системы для одного вида финансовых инструментов и одного набора данных очень похожа
1Simple - оригинал.
2Displaced, Weighted or Exponential - оригинал.
БОЛЕЕ ГЛУБОКИЙ ВЗГЛЯД НА ОПТИМИЗАЦИЮ
Чтобы проиллюстрировать этот факт, вновь были взяты следующие результаты с рынка бондов, но на этот раз система пересечения с простой скользящей средней была оптимизирована с 1990 по 1993 гг.:
Параметры, оптимизированные для 1990-1993 годов
Чистая прибыль $34.000
Число торгов 21
Число выигрышей 10
Число убытков 21
% выигрышей 48%
Средний выигрыш $4.300
Средний убыток $800
Средняя торговля $ 1.600
Коэффициент выигрыш/проигрыш 5,30
Максимальное проседание капитала $6.100
При оптимизации параметров системы простой скользящей средней с 1993 по 1995 гг. наибольшую прибыль дали 10-дневная краткосрочная скользящая средняя и 34-дневная долгосрочная скользящая средняя. Но для 1990-1993 годов параметры были другими. В этом периоде использовалась 18-дневная краткосрочная скользящая средняя и 48-дневная долгосрочная скользящая средняя. Если бы в период между 1994 и 1998 годами использовались оптимизированные параметры, полученные для 1993 г., то у нас получились бы следующие результаты:
Чистая прибыль $23.000
Число торгов 18
Число выигрышей 8
Число убытков 10
% выигрышей 44%
Средний выигрыш $6.300
Средний убыток $2.600
Средняя торговля $ 1.300
Коэффициент выигрыш/проигрыш 2,35
Максимальное проседание капитала $13.100
Есть важная разница между двумя результатами. Во-первых, чистая прибыль была значительно ниже на протяжении более продолжительного периода времени, чем период, на котором производилась оптимизация. Процент выигрышей слегка снизился, а средние потери стали гораздо выше. Представьте себе, опираясь на логику системы, что предполагается средний убыток - 800 долларов, а затем оказывается 2.600 долларов. При таком ходе событий было бы сложно продолжать торговлю. Помимо этого, коэффициент выигрыш/проигрыш стал ниже. Когда процент выигрыша и коэффициент выигрыш/проигрыш значительно уменьшаются, то снижается и резерв для ошибки. И, наконец, максимальное падение цены должно было бы составлять 6.000 долларов, но вместо этого оно возросло почти что вдвое, дойдя до $13.000. Если вы полагаете, что потеряете на контракт чуть больше, чем 6.000 долларов, то в какой точке вы будете готовы остановиться и выйти из позиций? Для многих из нас падение капитала на 13.000 долларов было бы слишком большим.
Следующая группа результатов показывает нам те же параметры для того же рынка, но в течение другого временного периода. Этот временной период частично включает в себя первый период и частично второй период тестирования. Данные взяты с 1992 по 1996 гг. При этом использовалась 18-дневная краткосрочная скользящая средняя и 48-дневная долгосрочная скользящая средняя.
Чистая прибыль $6.600
Число торгов 14
Число выигрышей 4
Число убытков 10
% выигрышей 29%
Средний выигрыш $7.700
Средний убыток $2.400
Средняя торговля $475
Коэффициент
Максимальное проседание капитала $17.000
Большая разница! На протяжении почти всех четырех лет этот метод, использующий параметры предшествующего периода, дал всего 6.600 долларов при 4 выигрышных торгах! Максимальное проседание капитала за этот период составило 17.000 долларов. Как видите, показатели могут вводить в заблуждение, особенно если они оптимизированы. Да, следует отметить, что метод все же способен приносить доход. Но сможете ли вы в таких обстоятельствах продолжать торговлю? Примените тот же метод и те же параметры к другому рынку. Что произойдет с этими показателями?
Следующие результаты были получены в результате применения метода к рынку швейцарского франка с 1993 по 1998 годы. Первая серия результатов была получена при использовании 18-дневной краткосрочной скользящей средней и 48-дневной долгосрочной скользящей средней, а во второй серии использовалась 10-дневная краткосрочная скользящая средняя и 34-дневная долгосрочная скользящая* средняя.
Чистая прибыль $10.000 Чистая прибыль $8.000
Число торгов 29 Число торгов 45
Число выигрышей 10 Число выигрышей 15
Число убытков 19 Число убытков 30
% выигрышей 34% % выигрышей 33$Ь
Средний выигрыш $3.200 Средний выигрыш $3.000
Средний убыток $1.200 Средний убыток $1.200
Средняя торговля $350 Средняя торговля $175
Коэффициент Коэффициент
выигрыш/проигрыш 2,75 выигрыш/проигрыш 2,40
Максимальное Максимальное
проседание $7.000 проседание $11.000
Полученные итоги несколько отличаютсяне только друг от друга но и от других результатов по рынку бондов. Они также отличаются и от результатов, полученных в результате оптимизации самого рынка франка. После оптимизации параметров оптимальной оказалась 19 дневная краткосрочная скользящая средняя, в то время как оптимальная долгосрочная скользящая средняя была 27-дневной. Результаты в рамке вверху страницы были получены в результате тестирования.
Не стоит опрометчиво отвергать оптимизацию, поскольку все системы и все инструменты будут сталкиваться с аналогичными различиями между оптимизированными результатами на разных временных промежутках. А если это так, что реально мы можем ожидать от торговых систем? Если результаты оптимизации нереалистичны, то как мы трейдеры, сможем узнать, что нас ожидает? Одним словом, никак. Мы можем делать некоторые логические выводы, но не на основании результатов, а исходя из процесса оптимизации. Оптимизация никогда не должна проводиться с целью установления наилучших параметров остановок, правил выхода и т. д. То, что принесло высокие результаты в прошлом, необязательно принесет такие же результаты в будущем. Beроятность правильности моих слов выше вероятности, что в вас не ударит молния. Кроме того, высока вероятность, что результаты, оптимизированные для одного набора данных, не будут даже приблизительно оптимальными для аналогичного набора данных в другой период времени.
Чистая прибыль $39.000
Число торгов 52
Число выигрышей 26
Число убытков 26
% выигрышей 50%
Средний выигрыш $2.600
Средний убыток $ 1.100
Средняя торговля $730
Коэффициент выигрыш/проигрыш 2,30
Наибольшее падение капитала $6.000
ПРОЦЕСС ОПТИМИЗАЦИИ
Единственная практическая польза оптимизации связана не с результатами как таковыми, а скорее с данными, получаемыми по итогам тестирования при оптимизации. Например, оптимизация рынка швейцарского франка по системе пересекающихся простых скользящих средних включает 496 различных тестовых параметров. Каждый из этих тестов дает особый набор показателей. Не стоит делать какие-либо практические выводы, основываясь на показателях одного, пускай даже лучшего, теста. Гораздо разумнее рассмотреть как можно большее количество тестов.