Чтение онлайн

на главную

Жанры

Большая Советская Энциклопедия (ГЕ)
Шрифт:

Лит.: Рыжов П. А., Букринский В. А., Горная геометрия, М,, 1958; Ушаков И. Н., Горная геометрия, 3 изд., М., 1962; Вилесов Г. И., Ивченко А. Н., Практикум по геометрии недр, Свердловск, 1956.

Н. Г. Жуков.

Геометрическая акустика

Геометри'ческая аку'стика, раздел акустики, в котором изучаются законы распространения звука на основе представления о звуковых лучах как линиях, вдоль которых распространяется звуковая энергия. Г. А. — предельный случай волновой акустики при переходе к бесконечно малой длине волны, поэтому методы Г. а. являются приближёнными и тем точнее отражают действительность, чем меньше длина волны. Основная задача Г. а. состоит в вычислении траекторий звуковых лучей. Наиболее простой вид лучи имеют в однородной среде, где они представляют собой прямые линии.

Уравнения Г. а. имеют в основном такую же форму, как и уравнения геометрической оптики. Для звуковых лучей справедливы те же законы отражения и преломления, что и для световых.

Методами Г. а. пользуются для практических приложений в самых различных областях акустики. Например, в архитектурной акустике свойство прямолинейности звуковых лучей даёт возможность весьма просто определять время реверберации. Действие эхолотов и гидролокаторов основано на измерении времени пробега звуковых лучей до отражающего объекта и обратно. Лучевыми представлениями пользуются при расчёте звуковых фокусирующих систем. На основе законов Г. а. удаётся создать приближённую теорию распространения звука в неоднородных средах (например, в море, в атмосфере). Методы Г. а. имеют ограниченную область применения, т.к. самое понятие луча справедливо только в тех случаях, когда амплитуда и направление волны мало меняются на расстояниях порядка длины волны звука. В частности, для применения Г. а. требуется, чтобы размеры помещений или препятствий на пути звука были много больше длины волны звука. Если характерный для данной задачи размер становится сравнимым с длиной волны, то существенную роль начинает играть дифракция волн, которую Г. а. не охватывает.

Геометрическая изомерия

Геометри'ческая изомери'я (в органической химии), явление, заключающееся в существовании соединений, различающихся только расположением заместителей относительно плоскости двойной связи или цикла (см. Изомерия). Г. и. комплексных соединений состоит в различном пространственном расположении лигандов около центрального иона.

Геометрическая оптика

Геометри'ческая о'птика, раздел оптики, в котором изучаются законы распространения света на основе представлений о световых лучах. Под световым лучом понимают линию, вдоль которой распространяется поток световой энергии. Понятие луча не противоречит действительности только в той мере, в какой можно пренебрегать дифракцией света на оптических неоднородностях, а это допустимо только тогда, когда длина световой волны много меньше размеров неоднородностей. Законы Г. о. позволяют создать упрощённую, но в большинстве случаев достаточно точную теорию оптических систем. Г. о. в основном объясняет образование изображений оптических, даёт возможность вычислять аберрации оптических систем и разрабатывать методы их исправления, вывести энергетические соотношения в световых пучках, проходящих через оптические системы. Вместе с тем все волновые явления, в том числе дифракционные, влияющие на качество изображений и определяющие разрешающую способность оптических приборов, не рассматриваются в Г. о.

Представление о световых лучах возникло ещё в античной науке. Евклид, обобщив достижения своих предшественников, сформулировал закон прямолинейного распространения света и закон отражения света. В 17 в. в связи с изобретением ряда оптических приборов (зрительная труба, лупа, телескоп, микроскоп и т.д.) и началом их широкого использования Г. о. бурно развивалась. Большая роль в этом развитии принадлежит И. Кеплеру, Р. Декарту и В. Снеллю, открывшему Снелля закон преломления света. Построение теоретических основ Г. о. к середине 17 в. было завершено установлением Ферма принципа, утверждающего, что луч света, вышедший из одной точки и проходящий через несколько сред с произвольными границами и меняющимся показателем преломления, попадает в другую точку за минимальное (точнее, за экстремальное) время. Для однородной среды принцип Ферма сводится просто к закону прямолинейного распространения света. Законы преломления и отражения, исторически открытые ранее, также являются следствиями этого принципа, который сыграл значительную роль в развитии и др. разделов физической теории.

С 18 в. Г. о., совершенствуя методы расчёта оптических систем, развивалась как прикладная наука. После создания электродинамики классической было показано, что формулы Г. о. могут быть получены из уравнений Максвелла в качестве предельного случая, соответствующего переходу к исчезающе малой длине волны.

Г. о. является примером теории, позволившей при малом числе фундаментальных понятий и законов (представление о лучах света, законы отражения и преломления) получать много практически важных результатов. В теории оптических устройств она сохранила большое значение до настоящего времени. См. также Кардинальные точки, Линза, Эйконал.

Лит.: Ландсберг Г. С., Оптика, 4 изд., М., 1957 (Общий курс физики, т. 3).

Геометрическая прогрессия

Геометри'ческая прогре'ссия, последовательность чисел (a1, a2,&frac14;, an&frac14;), из которых каждое равно предыдущему, умноженному на постоянное для данной прогрессии число q (знаменатель Г. п.); например 2, 8, 32,..., n = 4. Если q > 1 (q < 1), то Г. П. — возрастающая (убывающая); при q < 0 Г. п.— знакочередующаяся. Любой член Г. п. (an) вычисляется по формуле: an = a1qn-1; сумма (Sn) первых n членов Г. п. — по формуле:

Геометрические построения

Геометри'ческие построе'ния, решение некоторых геометрических задач при помощи вспомогательных инструментов (линейка, циркуль и т.п.), которые предполагаются абсолютно точными. В исследованиях по Г. п. выясняется круг задач, разрешимых с помощью заданного набора инструментов, и указываются способы решения этих задач. Г. п. обычно разделяются на построения на плоскости и в пространстве. Отдельные задачи на Г. п. на плоскости рассматривались ещё в древности (например, знаменитые задачи о трисекции угла, удвоении куба, квадратуре круга). Как и многие другие, они относятся к задачам на Г. п. с помощью циркуля и линейки. Г. п. на плоскости имеют богатую историю. Теория этих построений разработана датским геометром Г. Мором (1672) и затем итальянским инженером Л. Маскерони (1797). Значительный вклад в теорию Г. п. был сделан швейцарским учёным Я. Штейнером (1833). Лишь в 19 в. был выяснен круг задач, разрешимых с помощью указанных инструментов. В частности, отмеченные выше знаменитые задачи древности не разрешимы с помощью циркуля и линейки.

Г. п. на плоскости Лобачевского занимался сам Н. И. Лобачевский. Общая теория таких построений и построений на сфере была развита советским геометром Д. Д. Мордухай-Болтовским.

Г. п. в пространстве связаны с методами начертательной геометрии. Теория Г. п. представляет интерес лишь в части, связанной с практическими приложениями в начертательной геометрии.

Лит.: Адлер А., Теория геометрических построений, пер. с нем., 3 изд., Л., 1940; Четверухин Н. Ф., Методы геометрических построений, М., 1938; Штейнер Я., Геометрические построения, выполняемые с помощью прямой линии и неподвижного круга, пер. с нем., М., 1939; Александров И. И., Сборник геометрических задач на построение с решениями, 18 изд., М., 1950.

Э. Г. Позняк.

Геометрические преобразования

Геометри'ческие преобразова'ния, взаимно однозначные отображения прямой, плоскости или пространства на себя. Обычно рассматривают такие совокупности Г. п., что каждую конечную последовательность преобразований совокупности можно заменить одним преобразованием этой совокупности, а преобразование, обратное любому из рассматриваемых, также принадлежит данной совокупности. Такие совокупности Г. п. образуют т. н. группу преобразований. Примерами Г. п., образующих группу преобразований, могут служить движения плоскости (или пространства), аффинные преобразования,проективные преобразования.

Поделиться:
Популярные книги

В теле пацана 4

Павлов Игорь Васильевич
4. Великое плато Вита
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
В теле пацана 4

Эфемер

Прокофьев Роман Юрьевич
7. Стеллар
Фантастика:
боевая фантастика
рпг
7.23
рейтинг книги
Эфемер

Идеальный мир для Лекаря 13

Сапфир Олег
13. Лекарь
Фантастика:
фэнтези
юмористическое фэнтези
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 13

Король Руси

Ланцов Михаил Алексеевич
2. Иван Московский
Фантастика:
альтернативная история
6.25
рейтинг книги
Король Руси

Делегат

Астахов Евгений Евгеньевич
6. Сопряжение
Фантастика:
боевая фантастика
постапокалипсис
рпг
5.00
рейтинг книги
Делегат

Прометей: каменный век II

Рави Ивар
2. Прометей
Фантастика:
альтернативная история
7.40
рейтинг книги
Прометей: каменный век II

На границе империй. Том 6

INDIGO
6. Фортуна дама переменчивая
Фантастика:
боевая фантастика
космическая фантастика
попаданцы
5.31
рейтинг книги
На границе империй. Том 6

Чемпион

Демиров Леонид
3. Мания крафта
Фантастика:
фэнтези
рпг
5.38
рейтинг книги
Чемпион

Нефилим

Демиров Леонид
4. Мания крафта
Фантастика:
фэнтези
боевая фантастика
рпг
7.64
рейтинг книги
Нефилим

Береги честь смолоду

Вяч Павел
1. Порог Хирург
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Береги честь смолоду

Восход. Солнцев. Книга XI

Скабер Артемий
11. Голос Бога
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Восход. Солнцев. Книга XI

Иван Московский. Том 5. Злой лев

Ланцов Михаил Алексеевич
5. Иван Московский
Фантастика:
попаданцы
альтернативная история
6.20
рейтинг книги
Иван Московский. Том 5. Злой лев

Таблеточку, Ваше Темнейшество?

Алая Лира
Любовные романы:
любовно-фантастические романы
6.30
рейтинг книги
Таблеточку, Ваше Темнейшество?

Кодекс Охотника. Книга XXI

Винокуров Юрий
21. Кодекс Охотника
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Охотника. Книга XXI