Большая Советская Энциклопедия (ГЕ)
Шрифт:
В теории римановых пространств исследуются вопросы, касающиеся связи их метрических свойств с топологическим строением, поведение геодезических (кратчайших на малых участках) линий в целом, как, например, вопрос о существовании замкнутых геодезических, вопросы «погружения», т. е. реализации данного n– мерного риманова пространства в виде n– мерной поверхности в евклидовом пространстве какого-либо числа измерений, вопросы псевдоримановой Г., связанные с общей теорией относительности, и др. К этому можно добавить развитие разнообразных обобщений римановой Г. как в духе общей дифференциальной Г., так и в духе обобщений синтетической Г.
В дополнение следует упомянуть алгебраическую геометрию, развившуюся из аналитической Г. и исследующую прежде всего геометрические
Значение геометрии. Применение евклидовой Г. представляет самое обычное явление всюду, где определяются площади, объёмы и т.п. Вся техника, поскольку в ней играют роль формы и размеры тел, пользуется евклидовой Г. Картография, геодезия, астрономия, все графические методы, механика немыслимы без Г. Ярким примером является открытие И. Кеплером факта вращения планет по эллипсам; он мог воспользоваться тем, что эллипс был изучен ещё древними геометрами. Глубокое применение Г. представляет геометрическая кристаллография, послужившая источником и областью приложения теории правильных систем фигур (см. Кристаллография).
Более отвлечённые геометрические теории находят широкое применение в механике и физике, когда совокупность состояний какой-либо системы рассматривается как некоторое пространство (см. раздел Обобщение предмета геометрии). Так, все возможные конфигурации (взаимное расположение элементов) механической системы образуют «конфигурационное пространство»; движение системы изображается движением точки в этом пространстве. Совокупность всех состояний физической системы (в простейшем случае — положения и скорости образующих систему материальных точек, например молекул газа) рассматривается как «фазовое пространство» системы. Эта точка зрения находит, в частности, применение в статистической физике и др.
Впервые понятие о многомерном пространстве зародилось в связи с механикой ещё у Ж. Лагранжа, когда к трём пространств. координатам х, у, z в качестве четвёртой формально присоединяется время t. Так появляется четырёхмерное «пространство — время», где точка определяется четырьмя координатами х, у, z, t. Каждое событие характеризуется этими четырьмя координатами и, отвлеченно, множество всех событий в мире оказывается четырёхмерным пространством. Этот взгляд получил развитие в геометрической трактовке теории относительности, данной Г. Минковским, а потом в построении А. Эйнштейном общей теории относительности. В ней он воспользовался четырехмерной римановой (псевдоримановой) Г. Так геометрические теории, развившиеся из обобщения данных пространственного опыта, оказались математическим методом построения более глубокой теории пространства и времени. В свою очередь теория относительности дала мощный толчок развитию общих геометрических теорий. Возникнув из элементарной практики, Г. через ряд абстракций и обобщений возвращается к естествознанию и практике на более высокой ступени в качестве метода.
С геометрической точки зрения многообразие пространства — времени обычно трактуется в общей теории относительности как неоднородное римановского типа, но с метрикой, определяемой знакопеременной формой, приводимой в бесконечно малой области к виду
dx2 + dy2 + dz2 — c2dt2
(с — скорость света в вакууме). Само пространство, поскольку его можно отделить от времени, оказывается также неоднородным римановым. С современной геометрической точки зрения лучше смотреть на теорию относительности следующим образом. Специальная теория относительности
x2 + y2 + z2 — c2t2
точнее, это есть пространство с группой преобразований, сохраняющих указанную квадратичную форму. От всякой формулы, выражающей физический закон, требуется, чтобы она не менялась при преобразованиях группы этого пространства, которые суть так называемые преобразования Лоренца. Согласно же общей теории относительности, многообразие пространства — времени неоднородно и лишь в каждой «бесконечно малой» области сводится к псевдоевклидову, т. е. оно есть пространство картановского типа (см. раздел Современная геометрия). Однако такое понимание стало возможно лишь позже, т.к. само понятие о пространствах такого типа появилось после теории относительности и было развито под её прямым влиянием.
В самой математике положение и роль Г. определяются прежде всего тем, что через неё в математику вводилась непрерывность. Математика как наука о формах действительности сталкивается прежде всего с двумя общими формами: дискретностью и непрерывностью. Счёт отдельных (дискретных) предметов даёт арифметику, пространств. непрерывность изучает Г. Одним из основных противоречий, движущих развитие математики, является столкновение дискретного и непрерывного. Уже деление непрерывных величин на части и измерение представляют сопоставление дискретного и непрерывного: например, масштаб откладывается вдоль измеряемого отрезка отдельными шагами. Противоречие выявилось с. особой ясностью, когда в Древней Греции (вероятно, в 5 в. до н. э.) была открыта несоизмеримость стороны и диагонали квадрата: длина диагонали квадрата со стороной 1 не выражалась никаким числом, т.к. понятия иррационального числа не существовало. Потребовалось обобщение понятия числа — создание понятия иррационального числа (что было сделано лишь много позже в Индии). Общая же теория иррациональных чисел была создана лишь в 70-х гг. 19 в. Прямая (а вместе с нею и всякая фигура) стала рассматриваться как множество точек. Теперь эта точка зрения является господствующей. Однако затруднения теории множеств показали её ограниченность. Противоречие дискретного и непрерывного не может быть полностью снято.
Общая роль Г. в математике состоит также в том, что с нею связано идущее от пространственных представлений точное синтетическое мышление, часто позволяющее охватить в целом то, что достигается анализом и выкладками лишь через длинную цепь шагов. Так, Г. характеризуется не только своим предметом, но и методом, идущим от наглядных представлений и оказывающимся плодотворным в решении многих проблем др. областей математики. В свою очередь, Г. широко использует их методы. Т. о., одна и та же математическая проблема может сплошь и рядом трактоваться либо аналитически, либо геометрически, или в соединении обоих методов.
В известном смысле, почти всю математику можно рассматривать как развивающуюся из взаимодействия алгебры (первоначально арифметики) и Г., а в смысле метода — из сочетания выкладок и геометрических представлений. Это видно уже в понятии совокупности всех вещественных чисел как числовой прямой, соединяющей арифметические свойства чисел с непрерывностью. Вот некоторые основные моменты влияния Г. в математике.
1) В возникновении и развитии анализа Г. наряду с механикой имела решающее значение. Интегрирование происходит от нахождения площадей и объемов, начатого ещё древними учёными, причём площадь и объём как величины считались определёнными; никакое аналитическое определение интеграла не давалось до 1-й половины 19 в. Проведение касательных было одной из задач, породивших дифференцирование. Графическое представление функций сыграло важную роль в выработке понятий анализа и сохраняет своё значение. В самой терминологии анализа виден геометрический источник его понятий, как, например, в терминах: «точка разрыва», «область изменения переменной» и т.п. Первый курс анализа, написанный в 1696 Г. Лопиталем, назывался: «Анализ бесконечно малых для понимания кривых линий». Теория дифференциальных уравнений в большей части трактуется геометрически (интегральные кривые и т.п.). Вариационное исчислениевозникло и развивается в большой мере на задачах Г., и её понятия играют в нём важную роль.