Большая Советская Энциклопедия (ГЕ)
Шрифт:
Высокую степень линейности изменения напряжения на ёмкости можно получить, применяя вместо сопротивления R в тиратронном генераторе устройство (например, пентод), поддерживающее постоянный ток в процессе зарядки конденсатора, или применяя отрицательную обратную связь. Частотой колебаний тиратронного генератора можно (в известных пределах) управлять, подавая синхронизирующее напряжение на сетку тиратрона.
В тиратронном генераторе за период колебаний происходит полный энергообмен. Вся энергия, запасённая в конденсаторе за время зарядки, расходуется за время его разрядки через тиратрон. В этой системе нет цепей, в которых возможны колебательные процессы в отсутствие источников питания.
Мультивибратор на электронных лампах или транзисторах представляет собой двухтактное устройство, в котором Г. э. к. осуществляется путём попеременной зарядки и разрядки двух ёмкостей C1и C2
Различные варианты мультивибраторов применяются для получения периодических напряжений различной формы, необходимых для работы электронных устройств. Период колебаний определяется временами релаксации цепей, содержащих транзисторы. Колебания возможны лишь за счёт поддержания в системе непрерывно сменяющихся процессов зарядки и разрядки в цепях RC, не обладающих собственными колебательными свойствами.
RC– генератор синусоидальных колебаний также не содержит колебательных цепей. Однако за счёт выбора цепи управления активным элементом (электронной лампой, транзистором) условия Г. э. к. выполняются лишь для одного гармонического колебания с частотой, определяемой временем релаксации цепочек RC (рис. 14). Например, в RC– генераторе с электронной лампой термистор поддерживает усиление лампы на уровне, лишь немного превышающем критический уровень, соответствующий условию самовозбуждения. С ростом тока растет температура термистора и увеличивается его сопротивление, что, в свою очередь, ведёт к снижению крутизны характеристики лампы за счёт возникновения отрицательной обратной связи. Т. к. работа при этом происходит практически на линейной части характеристики лампы, то условия Г. э. к. будут выполняться лишь для одной частоты.
В подобном устройстве происходит полный энергообмен за каждый период колебания. При отключении источника питания колебания исчезают, и в системе могут иметь место лишь апериодические релаксационные процессы. С помощью RC– генератора получают гармонические колебания в диапазоне частот от долей гц до десятков и сотен кгц. RC-генераторы широко применяются как источники эталонных колебаний.
Генератор Ганна представляет собой небольшой (~100 мкм) монокристалл полупроводника, через который пропускается постоянный ток. При плотностях тока, создающих в полупроводнике напряжённость поля не менее 300 кв/м (3 кв/см), в объёме полупроводника возникают нестационарные процессы, приводящие к появлению сверхвысокочастотной переменной составляющей тока, текущего через полупроводник, и к возникновению на электродах переменного напряжения СВЧ (см. Ганна эффект).
В генераторе Ганна энергия источника постоянного тока преобразуется в колебательную энергию в кристалле, который одновременно играет роль и колебательной системы, и активного элемента. Отсутствием высокодобротного резонатора можно объяснить немонохроматичность колебаний. Спектральная линия, соответствующая основной частоте, широка; кроме того, одновременно возбуждается большое число побочных частот. С помощью генераторов Ганна, которые могут применяться как маломощные гетеродины, удаётся осуществлять Г. э. к. частотой от 100 Мгц до 10 Ггц и мощностью до 10 Мвт (при непрерывном генерировании) и сотен вт (при импульсной работе). Генераторы Ганна компактны и перспективны в микроэлектронике. Основное ограничение генерируемой мощности — нагревание кристалла при прохождении через него значительных постоянных токов.
Преобразователи частоты. К ним можно отнести некоторые типы квантовых генераторов радиодиапазона (мазеров)
В твердотельных лазерах на рубине или неодимовом стекле поглощение широкого спектра колебаний в области зелёной и синей части спектра приводит к генерации узкой спектральной линии с длиной волны l= 6943
Преобразователями частоты являются также параметрические генераторы. Параметрические генераторы радиодиапазона представляют собой резонансную колебательную систему — контур или объёмный резонатор, в котором один из энергоёмких (реактивных) параметров L или С зависит от приложенного напряжения или протекающего тока. При периодическом изменении одной из величин С или L с помощью внешних колебаний (накачки) частоты lн в контуре могут возбуждаться и поддерживаться колебания частоты l = 1/2lн. Наиболее широко распространены маломощные параметрические генераторы с переменной ёмкостью, созданной запертым полупроводниковым диодом специальной конструкции (параметрическим диодом). Применение многоконтурных схем позволяет генерировать колебания с частотой, не связанной жёстким соотношением с частотой накачки, и тем самым осуществлять преобразование энергии исходных колебаний одной частоты в энергию колебаний требуемой частоты (см. Параметрическое возбуждение и усиление электрических колебаний).
Аналогичный принцип используется для возбуждения колебаний оптического диапазона. Однако в этом случае параметрические явления носят волновой характер и осуществляются не в колебательном контуре, а в анизотропном кристалле (см. Параметрические генераторы света).
Лит.: Бонч-Бруевич М. А., Основы радиотехники, М., 1936; Харкевич А. А., Автоколебания, М., 1954; Теодорчик К. Ф., Автоколебательные системы, М., 1952: Горелик Г. С., Колебания и волны, 2 изд., М., 1959.
В. В. Мигулин.
Рис. 2. Генераторы с ёмкостной (а) и автотрансформаторной (б) обратной связью.
Рис. 4. Транзисторные генераторы на плоскостных триодах с индуктивной (а), автотрансформаторной (б) и ёмкостной (в) обратной связью.
Рис. 6. а — зависимость тока экранной сетки пентода от напряжения на его антидинатронной сетке; б — схема транзитронного генератора.
Рис. 14. RC-генератор синусоидальных колебаний; Т — термистор; r — сопротивление нагрузки.
Рис. 10. Клистронные генераторы: а — отражательный клистрон; б — двухрезонаторный пролётный клистрон; С — сетки резонатора; А — анод; К — катод.
Рис. 12. а — тиратронный генератор; б — вольтамперная характеристика тиратрона.
Рис. 5. Вольтамперная характеристика с падающим участком.